Leveraging Short-Read Sequencing to Explore the Genomics of Sepiolid Squid

Author:

Heath-Heckman Elizabeth1ORCID,Nishiguchi Michele K2

Affiliation:

1. Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA

2. Department of Molecular and Cell Biology, University of California Merced, Merced, CA 95343, USA

Abstract

Synopsis Due to their large size (∼3–5 Gb) and high repetitive content, the study of cephalopod genomes has historically been problematic. However, with the recent sequencing of several cephalopod genomes, including the Hawaiian bobtail squid (Euprymna scolopes), whole-genome studies of these molluscs are now possible. Of particular interest are the sepiolid or bobtail squids, many of which develop photophores in which bioluminescent bacterial symbionts reside. The variable presence of the symbiosis throughout the family allows us to determine regions of the genome that are under selection in symbiotic lineages, potentially providing a mechanism for identifying genes instrumental in the evolution of these mutualistic associations. To this end, we have used high-throughput sequencing to generate sequence from five bobtail squid genomes, four of which maintain symbioses with luminescent bacteria (E. hyllebergi, E. albatrossae, E. scolopes, and Rondeletiola minor), and one of which does not (Sepietta neglecta). When we performed K-mer based heterozygosity and genome size estimations, we found that the Euprymna genus has a higher predicted genome size than other bobtail squid (∼5 Gb as compared to ∼4 Gb) and lower genomic heterozygosity. When we analyzed the repetitive content of the genomes, we found that genomes in the genus Euprymna appear to have recently acquired a significant quantity of LINE elements that are not found in its sister genus Rondeletiola or the closely related Sepietta. Using Abyss-2.0 and then Chromosomer with the published E. scolopes genome as a reference, we generated E. hyllebergi and E. albatrossae genomes of 1.54–1.57 Gb in size, but containing over 78–81% of eukaryotic single-copy othologs. The data that we have generated will enable future whole-genome comparisons between these species to determine gene and regulatory content that differs between symbiotic and non-symbiotic lineages, as well as genes associated with symbiosis that are under selection.

Funder

NASA

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3