Spatiotemporal Asymmetry in Metachronal Rowing at Intermediate Reynolds Numbers

Author:

Herrera-Amaya Adrian1,Seber Elizabeth K1,Murphy David W2ORCID,Patry Wyatt L3,Knowles Thomas S3,Bubel MacKenzie M3,Maas Amy E4ORCID,Byron Margaret L1

Affiliation:

1. Department of Mechanical Engineering, Penn State University, University Park, PA, 16802, USA

2. Department of Mechanical Engineering, University of South Florida, Tampa, FL, 33620, USA

3. Monterey Bay Aquarium, Monterey, CA, 93940, USA

4. Bermuda Institute of Ocean Sciences, St George's, GE01, Bermuda

Abstract

Abstract In drag-based swimming, individual propulsors operating at low Reynolds numbers (where viscous forces dominate over inertial forces) must execute a spatially asymmetric stroke to produce net fluid displacement. Temporal asymmetry (that is, differing duration between the power vs. recovery stroke) does not affect the overall generated thrust in this time-reversible regime. Metachronal rowing, in which multiple appendages beat sequentially, is used by a wide variety of organisms from low to intermediate Reynolds numbers. At the upper end of this range, inertia becomes important, and increasing temporal asymmetry can be an effective way to increase thrust. However, the combined effects of spatial and temporal asymmetry are not fully understood in the context of metachronal rowing. To explore the role of spatiotemporal asymmetry in metachronal rowing, we combine laboratory experiments and reduced-order analytical modeling. We measure beat kinematics and generated flows in two species of lobate ctenophores across a range of body sizes, from 7 to 40 mm in length. We observe characteristically different flows in ctenophores of differing body size and Reynolds number, and a general decrease in spatial asymmetry and increase in temporal asymmetry with increasing Reynolds number. We also construct a one-dimensional mathematical model consisting of a row of oscillating flat plates whose flow-normal areas change with time, and use it to explore the propulsive forces generated across a range of Reynolds numbers and kinematic parameters. The model results show that while both types of asymmetry increase force production, they have different effects in different regions of the parameter space. These results may have strong biological implications, as temporal asymmetry can be actively controlled while spatial asymmetry is likely to be partially or entirely driven by passive fluid-structure interaction.

Funder

National Academies Keck Futures Initiative

CONACYT

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3