WATER FLOWS AROUND THE COMB PLATES OF THE CTENOPHORE PLEUROBRACHIA PLOTTED BY COMPUTER: A MODEL SYSTEM FOR STUDYING PROPULSION BY ANTIPLECTIC METACHRONISM

Author:

Barlow D.,Sleigh M. A.,White R. J.

Abstract

Patterns of water flow around steadily beating comb plates of Pleurobrachia pileus were tracked using suspended plastic beads. The positions of the beads and the comb plates in the plane of the central longitudinal axis of the comb row were digitised from high-speed cine films covering several beat cycles. All of the data from each sequence were combined using a computer program which integrated them into a standard cycle, and the resulting data were plotted by a second computer program to produce charts for different stages in the beat cycle showing the flow velocity at a grid of points. On these charts, contour maps were drawn to indicate the speed and direction of the water flow. Water is drawn towards each comb row from ahead and from the sides and accelerates strongly backwards in a fairly narrow stream which joins those from the other seven comb rows at the rear of the animal. At a beat frequency of 10 Hz the comb plates move with a tip speed of up to 70 mm s-1 in their effective stroke; they have an estimated Reynolds number of 9 in this stroke. Changes in inter- plate volume between adjacent antiplectically coordinated plates are very important in propulsion, particularly near the end of the effective stroke when pairs of adjacent plates close together and cause the high-speed water from around the ciliary tips to be shed into the overlying stream as a series of jets at speeds of 50 mm s-1 or more. The antiplectic coordination of the comb plates makes a major contribution to the efficiency of propulsion.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3