Type I H+-pyrophosphatase regulates the vacuolar storage of sucrose in citrus fruit

Author:

Hussain Syed Bilal12ORCID,Shi Cai-Yun12,Guo Ling-Xia12,Du Wei12,Bai Ying-Xing12,Kamran Hafiz Muhammad12,Fernie Alisdair R3ORCID,Liu Yong-Zhong12

Affiliation:

1. Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China

2. College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China

3. Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany

Abstract

AbstractThe aim of this work was to evaluate the general role of the vacuolar pyrophosphatase proton pump (V-PPase) in sucrose accumulation in citrus species. First, three citrus V-PPase genes, designated CsVPP-1, CsVPP-2, and CsVPP-4, were identified in the citrus genome. CsVPP-1 and CsVPP-2 belonging to citrus type I V-PPase genes are targeted to the tonoplast, and CsVPP-4 belonging to citrus type II V-PPase genes is located in the Golgi bodies. Moreover, there was a significantly positive correlation between transcript levels of type I V-PPase genes and sucrose, rather than hexose, content in fruits of seven citrus cultivars. Drought and abscisic acid treatments significantly induced the CsVPP-1 and CsVPP-2 transcript levels, as well as the sucrose content. The overexpression of type I V-PPase genes significantly increased PPase activity, decreased pyrophosphate contents, and increased sucrose contents, whereas V-PPase inhibition produced the opposite effect in both citrus fruits and leaves. Furthermore, altering the expression levels of type I V-PPase genes significantly influenced the transcript levels of sucrose transporter genes. Taken together, this study demonstrated that CsVPP-1 and CsVPP-2 play key roles in sucrose storage in the vacuole by regulating pyrophosphate homeostasis, ultimately the sucrose biosynthesis and transcript levels of sucrose transport genes, providing a novel lead for engineering or breeding modified taste in citrus and other fruits.

Funder

National Key R & D Program of China

Earmarked Fund for China Agriculture Research System

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3