Vacuolar proteomic analysis reveals tonoplast transporters for accumulation of citric acid and sugar in citrus fruit

Author:

Mao Zuolin1,Wang Yue1,Li Mengdi1,Zhang Shuhang1,Zhao Zeqi1,Xu Qiang1,Liu Ji-Hong1,Li Chunlong12

Affiliation:

1. Huazhong Agricultural University National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, , Wuhan 430070, China

2. Hubei Hongshan Laboratory , Wuhan 430070, China

Abstract

Abstract Vacuole largely dictates the fruit taste and flavor, as most of the sugars and organic acids are stored in the vacuoles of the fruit. However, difficulties associated with vacuole separation severely hinder identification and characterization of vacuolar proteins in fruit species. In this study, we established an effective approach for separating vacuoles and successfully purified vacuolar protein from six types of citrus fruit with varying patterns of sugar and organic acid contents. By using label-free LC–MS/MS proteomic analysis, 1443 core proteins were found to be associated with the essential functions of vacuole in citrus fruit. Correlation analysis of metabolite concentration with proteomic data revealed a transporter system for the accumulation of organic acid and soluble sugars in citrus. Furthermore, we characterized the physiological roles of selected key tonoplast transporters, ABCG15, Dict2.1, TMT2, and STP7 in the accumulation of citric acid and sugars. These findings provide a novel perspective and practical solution for investigating the transporters underlying the formation of citrus taste and flavor.

Funder

Fundamental Research Funds for the Central Universities

Foundation of Hubei Hongshan Laboratory

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3