The NAC transcription factor NAC019-A1 is a negative regulator of starch synthesis in wheat developing endosperm

Author:

Liu Yunchuan12ORCID,Hou Jian1,Wang Xiaolu1,Li Tian1ORCID,Majeed Uzma1,Hao Chenyang1,Zhang Xueyong1ORCID

Affiliation:

1. Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China

2. State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China

Abstract

Abstract Starch is a major component of wheat (Triticum aestivum L.) endosperm and is an important part of the human diet. The functions of many starch synthesis genes have been elucidated. However, little is known about their regulatory mechanisms in wheat. Here, we identified a novel NAC transcription factor, TaNAC019-A1 (TraesCS3A02G077900), that negatively regulates starch synthesis in wheat and rice (Oryza sativa L.) endosperms. TaNAC019-A1 was highly expressed in the endosperm of developing grains and encoded a nucleus-localized transcriptional repressor. Overexpression of TaNAC019-A1 in rice and wheat led to significantly reduced starch content, kernel weight, and kernel width. The TaNAC019-A1-overexpression wheat lines had smaller A-type starch granules and fewer B-type starch granules than wild-type. Moreover, TaNAC019-A1 could directly bind to the ‘ACGCAG’ motif in the promoter regions of ADP-glucose pyrophosphorylase small subunit 1 (TaAGPS1-A1, TraesCS7A02G287400) and TaAGPS1-B1 (TraesCS7B02G183300) and repress their expression, thereby inhibiting starch synthesis in wheat endosperm. One haplotype of TaNAC019-B1 (TaNAC019-B1-Hap2, TraesCS3B02G092800) was positively associated with thousand-kernel weight and underwent positive selection during the Chinese wheat breeding process. Our data demonstrate that TaNAC019-A1 is a negative regulator of starch synthesis in wheat endosperm and provide novel insight into wheat yield improvement.

Funder

National Key Research and Development Program of China

Central Public-interest Scientific Institution Basal Research

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3