Transcriptomics in Erigeron canadensis reveals rapid photosynthetic and hormonal responses to auxin herbicide application

Author:

McCauley Cara L1,McAdam Scott A M1,Bhide Ketaki2,Thimmapuram Jyothi2,Banks Jo Ann1,Young Bryan G1

Affiliation:

1. Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA

2. Bioinformatics Core, Purdue University, West Lafayette, IN, USA

Abstract

AbstractThe perception pathway for endogenous auxin has been well described, yet the mode of action of synthetic auxin herbicides, used for >70 years, remains uncharacterized. We utilized transcriptomics and targeted physiological studies to investigate the unknown rapid response to synthetic auxin herbicides in the globally problematic weed species Erigeron canadensis. Synthetic auxin herbicide application consistently and rapidly down-regulated the photosynthetic machinery. At the same time, there was considerable perturbation to the expression of many genes related to phytohormone metabolism and perception. In particular, auxin herbicide application enhanced the expression of the key abscisic acid biosynthetic gene, 9-cis-epoxycarotenoid deoxygenase (NCED). The increase in NCED expression following auxin herbicide application led to a rapid biosynthesis of abscisic acid (ABA). This increase in ABA levels was independent of a loss of cell turgor or an increase in ethylene levels, both proposed triggers for rapid ABA biosynthesis. The levels of ABA in the leaf after auxin herbicide application continued to increase as plants approached death, up to >3-fold higher than in the leaves of plants that were drought stressed. We propose a new model in which synthetic auxin herbicides trigger plant death by the whole-scale, rapid, down-regulation of photosynthetic processes and an increase in ABA levels through up-regulation of NCED expression, independent of ethylene levels or a loss of cell turgor.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3