Nitric oxide, other reactive signalling compounds, redox, and reductive stress

Author:

Hancock John T1ORCID,Veal David1

Affiliation:

1. Department of Applied Sciences, University of the West of England, Bristol, UK

Abstract

Abstract Nitric oxide (NO) and other reactive nitrogen species (RNS) are key signalling molecules in plants, but they do not work in isolation. NO is produced in cells, often increased in response to stress conditions, but many other reactive compounds used in signalling are generated and accumulate spatially and temporally together. This includes the reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), and hydrogen sulfide (H2S). Here, the interactions with such other reactive molecules is briefly reviewed. Furthermore, along with ROS and H2S, NO will potentially contribute to the overall intracellular redox of the cell. However, RNS will exist in redox couples and therefore the influence of the cellular redox on such couples will be explored. In discussions of the aberrations in intracellular redox it is usually oxidation, so-called oxidative stress, which is discussed. Here, we consider the notion of reductive stress and how this may influence the signalling which may be mediated by NO. By getting a more holistic view of NO biology, the influence on cell activity of NO and other RNS can be more fully understood, and may lead to the elucidation of methods for NO-based manipulation of plant physiology, leading to better stress responses and improved crops in the future.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3