Rules for robots, and why medical AI breaks them

Author:

Evans Barbara J12ORCID

Affiliation:

1. University of Florida Levin College of Law , Gainesville, FL , USA

2. University of Florida Wertheim College of Engineering , Gainesville, FL , USA

Abstract

Abstract This article critiques the quest to state general rules to protect human rights against AI/ML computational tools. The White House Blueprint for an AI Bill of Rights was a recent attempt that fails in ways this article explores. There are limits to how far ethicolegal analysis can go in abstracting AI/ML tools, as a category, from the specific contexts where AI tools are deployed. Health technology offers a good example of this principle. The salient dilemma with AI/ML medical software is that privacy policy has the potential to undermine distributional justice, forcing a choice between two competing visions of privacy protection. The first, stressing individual consent, won favor among bioethicists, information privacy theorists, and policymakers after 1970 but displays an ominous potential to bias AI training data in ways that promote health care inequities. The alternative, an older duty-based approach from medical privacy law aligns with a broader critique of how late-20th-century American law and ethics endorsed atomistic autonomy as the highest moral good, neglecting principles of caring, social interdependency, justice, and equity. Disregarding the context of such choices can produce suboptimal policies when - as in medicine and many other contexts - the use of personal data has high social value.

Funder

National Institutes of Health Common Fund’s

Patient-Focused Collaborative Hospital Repository Uniting Standards (CHoRUS) for Equitable AI

Publisher

Oxford University Press (OUP)

Subject

Law,Biochemistry, Genetics and Molecular Biology (miscellaneous),Medicine (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3