d-Arabitol production by a high arabitol-producing yeast, Zygosaccharomyces sp. Gz-5 isolated from miso

Author:

Iwata Kan1,Kanokozawa Rikuo1,Iwata Aoi1,Maeda Mayumi2,Maehashi Kenji12,Yoshikawa Jun2ORCID

Affiliation:

1. Department of Fermentation Science and Technology, Graduate School of Applied Bioscience, Tokyo University of Agriculture , 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo , Japan

2. Department of Fermentation Science, Faculty of Applied Bioscience, Tokyo University of Agriculture , 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo , Japan

Abstract

ABSTRACT d-Arabitol, an alternative sweetener to sugar, has low calorie content, high sweetness, low glycemic index, and insulin resistance-improving ability. In this study, d-arabitol-producing yeast strains were isolated from various commercial types of miso, and strain Gz-5 was selected among these strains. Phylogenetic tree analysis of the internal transcribed spacer sequence revealed that strain Gz-5 was distinct from Zygosaccharomyces rouxii, a major fermenting yeast of miso. The strain, identified as Zygosaccharomyces sp. Gz-5, grew better than other Z. rouxii in 150 g/L NaCl and produced 114 g/L d-arabitol from 295 g/L glucose in a batch culture for 8 days (0.386 g/g-consumed glucose). In a fed-batch culture, the yeast produced 133 g/L d-arabitol for 14 days, and the total d-arabitol amount increased by 1.75-fold. These results indicated that Zygosaccharomyces sp. Gz-5, a non-genetically modified strain, has excellent potential for the industrial production of d-arabitol.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3