An Improved Density Peaks Clustering Algorithm Based On Density Ratio

Author:

Zou Yujuan12ORCID,Wang Zhijian1,Xu Pengfei1,Lv Taizhi3ORCID

Affiliation:

1. College of Computer and Information, Hohai University , Focheng West Road, Jiangning District, Nanjing 211100 , China

2. College of Information Engineering, Jiangsu Maritime Institute , Gezhi Road, Jiangning District, Nanjing 211199 , China

3. Department of Research and Development, Nanjing Longyuan Microelectronic Company Limited , Nanyou Road, Jiangning District, Nanjing 211106 , China

Abstract

Abstract Density peaks clustering (DPC) is a relatively new density clustering algorithm. It is based on the idea that cluster centers always have relatively high local densities and are relatively far from the points with higher densities. With the aforementioned idea, a decision graph can be drawn, and cluster centers will be chosen easily with the aid of the decision graph. However, the algorithm has its own weaknesses. Because the algorithm calculates local density and allocates points based on the distances between certain points, the algorithm has difficulty in classifying points into proper groups with varying densities or nested structures. This paper proposes an improved density peaks clustering algorithm called Dratio-DPC to overcome this weakness. First, Dratio-DPC adjusts the original local density with a coefficient calculated with the density ratio. Second, Dratio-DPC takes density similarity into consideration to calculate the distances between one point and other points with higher local densities. We design and perform experiments on different benchmark datasets and compare the clustering results of Dratio-DPC, traditional clustering algorithms and three improved DPC algorithms. Comparison results show that Dratio-DPC is effective and applicable to a wider range of scenarios.

Funder

China Postdoctoral Science Foundation

Jiangsu Maritime Institute

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3