An Improved Seed Point Selection-Based Unsupervised Color Clustering for Content-Based Image Retrieval Application

Author:

Pavithra L K1,Sree Sharmila T1

Affiliation:

1. Department of Information Technology, SSN College of Engineering, Chennai, India

Abstract

Abstract The images involved in the content-based image retrieval (CBIR) applications are collectively represented by features such as color, texture and shape. The precision of the CBIR application relies on the key features used in image representation and its similarity measure. In CBIR, dominant color feature extraction is affected by the predefined intervals used in color quantization. The proposed work mainly concentrates on extracting the dominant color information of the image using the clustering process. The clustering process is initiated by the proposed seed point’s selection approach. This approach derives the number of seed points using the first order statistical measure and maximum range of the distributed pixel values. Moreover, this work gives equal priority to dominant color and its occurrence information in calculating the similarity between query and database images. Finally, the standard databases such as SIMPLIcity, Corel-10k, OT-scene, Oxford flower and GHIM are taken to investigate the performance of the proposed dominant color based image retrieval application.

Publisher

Oxford University Press (OUP)

Subject

General Computer Science

Reference42 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improved Density Peaks Clustering Algorithm Based On Density Ratio;The Computer Journal;2024-03-02

2. ConDPC: Data Connectivity-Based Density Peak Clustering;Applied Sciences;2022-12-13

3. Automatic Color Extraction Algorithm of Graphic Design Image Based on Artificial Intelligence;International Journal of Circuits, Systems and Signal Processing;2022-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3