Persistent Müllerian duct syndrome associated with genetic defects in the regulatory subunit of myosin phosphatase

Author:

Picard Jean-Yves1ORCID,Morin Gilles2,Devouassoux-Shisheboran Mojgan3,Van der Smagt Jasper4,Klosowski Serge5,Pienkowski Catherine6,Pierre-Renoult Peggy7,Masson Cécile8,Bole Christine9,Josso Nathalie1ORCID

Affiliation:

1. Sorbonne Université, INSERM, Centre de Recherches Saint-Antoine, Lipodystrophies, Adaptations Métaboliques et Hormonales et Vieillissement, UMR_S 938 , Paris, France

2. Department of Medical Genetics, Centre Hospitalo-Universitaire d’Amiens , Amiens, France

3. Institut Multisite de Pathologie, Hospices Civils de Lyon , Lyon, France

4. Division of Clinical Genetics, Medical University of Utrecht , The Netherlands

5. Service de Néonatologie, Centre Universitaire de Lens , Lens, France

6. Pathologies Gynécologiques Rares, Hôpital des Enfants , Toulouse Cedex 9, France

7. Unité d'Endocrinologie, CHU Bretonneau , Tours Cedex 9, France

8. Bioinformatics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes University, Sorbonne Paris Cite University , Paris, France

9. Genomics Core Facility, Institut Imagine, Structure Fédérative de Recherche Necker, INSERM 1163, INSERM US24/CNRS UAR3633, Paris Descartes University, Sorbonne Paris Cité University , Paris, France

Abstract

Abstract STUDY QUESTION Can mutations of genes other than AMH or AMHR2, namely PPP1R12A coding myosin phosphatase, lead to persistent Müllerian duct syndrome (PMDS)? SUMMARY ANSWER The detection of PPP1R12A truncation mutations in five cases of PMDS suggests that myosin phosphatase is involved in Müllerian regression, independently of the anti-Müllerian hormone (AMH) signaling cascade. WHAT IS KNOWN ALREADY Mutations of AMH and AMHR2 are detectable in an overwhelming majority of PMDS patients but in 10% of cases, both genes are apparently normal, suggesting that other genes may be involved. STUDY DESIGN, SIZE, DURATION DNA samples from 39 PMDS patients collected from 1990 to present, in which Sanger sequencing had failed to detect biallelic AMH or AMHR2 mutations, were screened by massive parallel sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS To rule out the possibility that AMH or AMHR2 mutations could have been missed, all DNA samples of good quality were analyzed by targeted next-generation sequencing. Twenty-four samples in which the absence of AMH or AMHR2 biallelic mutations was confirmed were subjected to whole-exome sequencing with the aim of detecting variants of other genes potentially involved in PMDS. MAIN RESULTS AND THE ROLE OF CHANCE Five patients out of 24 (21%) harbored deleterious truncation mutations of PP1R12A, the gene coding for the regulatory subunit of myosin phosphatase, were detected. In addition to PMDS, three of these patients presented with ileal and one with esophageal atresia. The congenital abnormalities associated with PMDS in our patients are consistent with those described in the literature for PPP1R12A variants and have never been described in cases of AMH or AMHR2 mutations. The role of chance is therefore extremely unlikely. LIMITATIONS, REASONS FOR CAUTION The main limitation of the study is the lack of experimental validation of the role of PPP1R12A in Müllerian regression. Only circumstantial evidence is available, myosin phosphatase is required for cell mobility, which plays a major role in Müllerian regression. Alternatively, PPP1R12A mutations could affect the AMH transduction pathway. WIDER IMPLICATIONS OF THE FINDINGS The study supports the conclusion that failure of Müllerian regression in males is not necessarily associated with a defect in AMH signaling. Extending the scope of molecular analysis should shed light upon the mechanism of the initial steps of male sex differentiation. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by la Fondation Maladies Rares, GenOmics 2021_0404 and la Fondation pour la Recherche Médicale, grant EQU201903007868. The authors report no conflict of interest. TRIAL REGISTRATION NUMBER N/A.

Funder

Fondation Maladies Rares

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynecology,Rehabilitation,Reproductive Medicine

Reference36 articles.

1. Predicting functional effect of human missense mutations using PolyPhen-2;Adzhubei;Curr Protoc Hum Genet,2013

2. Molecular mechanisms of hormone-mediated Müllerian duct regression: involvement of beta-catenin;Allard;Development,2000

3. The extended PP1 toolkit: designed to create specificity;Bollen;Trends Biochem Sci,2010

4. Protein phosphatase 1–targeted in many directions;Cohen;J Cell Sci,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3