Affiliation:
1. Unite de Recherches sur l'Endocrinologie du Developpement (INSERM), Ecole Normale Superieure, Departement de Biologie, 92120 Montrouge, France.
Abstract
Regression of the Mullerian duct in the male embryo is one unequivocal effect of anti-Mullerian hormone, a glycoprotein secreted by the Sertoli cells of the testis. This hormone induces ductal epithelial regression through a paracrine mechanism originating in periductal mesenchyme. To probe the mechanisms of action of anti-Mullerian hormone, we have studied the sequence of cellular and molecular events involved in duct regression. Studies were performed in male rat embryos and in transgenic mice overexpressing or lacking anti-Mullerian hormone, both in vivo and in vitro. Anti-Mullerian hormone causes regression of the cranial part of the Mullerian duct whereas it continues to grow caudally. Our work shows that this pattern of regression is correlated with a cranial to caudal gradient of anti-Mullerian hormone receptor protein, followed by a wave of apoptosis spreading along the Mullerian duct as its progresses caudally. Apoptosis is also induced by AMH in female Mullerian duct in vitro. Furthermore, apoptotic indexes are increased in Mullerian epithelium of transgenic mice of both sexes overexpressing the human anti-Mullerian hormone gene, exhibiting a positive correlation with serum hormone concentration. Inversely, apoptosis is reduced in male anti-Mullerian hormone-deficient mice. We also show that apoptosis is a decisive but not sufficient process, and that epitheliomesenchymal transformation is an important event of Mullerian regression. The most striking result of this study is that anti-Mullerian hormone action in peri-Mullerian mesenchyme leads in vivo and in vitro to an accumulation of cytoplasmic beta-catenin. The co-localization of beta-catenin with lymphoid enhancer factor 1 in the nucleus of peri-Mullerian mesenchymal cells, demonstrated in primary culture, suggests that overexpressed beta-catenin in association with lymphoid enhancer factor 1 may alter transcription of target genes and may lead to changes in mesenchymal gene expression and cell fate during Mullerian duct regression. To our knowledge, this is the first report that beta-catenin, known for its role in Wnt signaling, may mediate anti-Mullerian hormone action.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献