Modification of the effects of nitrogen dioxide and sulfur dioxide on congenital limb defects by meteorological conditions

Author:

Jiang Wen1ORCID,Liu Zhiyu2,Ni Bin2,Xie Wanqin2,Zhou Haiyan1,Li Xingli1ORCID

Affiliation:

1. Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China

2. Maternal and Child Health Care Hospital of Hunan Province, Changsha, China

Abstract

Abstract STUDY QUESTION Can meteorological conditions modify the associations between NO2 and SO2 exposure and congenital limb defects (CLDs) during the first trimester of pregnancy? SUMMARY ANSWER Increases in NO2 and SO2 exposure were consistently associated with higher risks of CLDs during the first trimester of pregnancy; both low- and high-temperature exposure and high air humidity act synergistically with the two air pollutants on CLDs. WHAT IS KNOWN ALREADY Animal studies have indicated air pollutants are associated with CLDs, but corresponding epidemiological studies are limited with equivocal conclusions. Meteorological conditions are closely connected to the generation, diffusion, distribution and even chemical toxicity of air pollutants. STUDY DESIGN, SIZE, DURATION This case–control study included 972 cases of CLDs and 9720 controls in Changsha, China during 2015–2018. PARTICIPANTS/MATERIALS, SETTING, METHODS Cases from the hospital based monitoring system for birth defects (including polydactyly, syndactyly, limb shortening, and clubfoot) and healthy controls from the electronic medical records system were studied. Complete data on daily average NO2 and SO2 concentrations and meteorological variables were obtained from local monitoring stations to estimate monthly individual exposures during the first trimester of pregnancy, using the nearest monitoring station approach for NO2 and SO2 concentrations, and the city-wide average approach for temperature and relative humidity, respectively. The 25th and 75th percentiles of daily mean temperature, as well as the 50th percentile of daily mean relative humidity during the study period were used to classify high- and low-temperature exposure, and high humidity exposure based on existing evidence and local climate characteristics. Multivariate logistic regression models were used to estimate the independent effects per 10 μg/m3 increase in NO2 and SO2 on CLDs, and the attribute proportions of interaction (API) were used to quantify the additive joint effects of air pollutants with meteorological conditions after including a cross product interaction term in the regression models. MAIN RESULTS AND THE ROLE OF CHANCE NO2 and SO2 exposures during the first trimester of pregnancy were consistently and positively associated with overall CLDs and subtypes, with adjusted odd ratios (aORs) ranging from 1.13 to 1.27 for NO2, and from 1.37 to 2.49 for SO2. The effect estimates were generally observed to be the strongest in the first month and then attenuated in the second and third months of pregnancy. Synergistic effects of both low and high temperature in combination with NO2 (with APIs ranging from 0.07 to 0.38) and SO2 (with APIs ranging from 0.18 to 0.51) appeared in the first trimester of pregnancy. Several significant modifying effects by high humidity were also observed, especially for SO2 (with APIs ranging from 0.13 to 0.38). Neither NO2 nor SO2 showed an interactive effect with season of conception. LIMITATIONS, REASONS FOR CAUTION The methods used to estimate individual exposure levels of air pollutants and meteorological factors may lead to the misclassification bias because of the lack of information on maternal activity patterns and residential mobility during pregnancy. Moreover, we were unable to consider several potentially confounding factors, including socioeconomic status, maternal nutrient levels, alcohol use and smoking during early pregnancy due to unavailable data, although previous studies have suggested limited change to the results after when including these factors in the analysis. WIDER IMPLICATIONS OF THE FINDINGS The findings are helpful for understanding the combined effects of air pollution and meteorological conditions on birth defects. Environmental policies and practices should be formulated and implemented to decrease air pollutant emissions and improve meteorological conditions to reduce their harmful effects on pregnancy. Additionally, pregnant women should be suggested to reduce outdoor time when the air quality is poor, especially when ambient temperature is higher or lower than what is comfortable, or when it is excessively humid. STUDY FUNDING/COMPETING INTEREST(S) The study is funded by Major Scientific and Technological Projects for Collaborative Prevention and Control of Birth Defects in Hunan Province (2019SK1012), Major Research and Development Projects in Hunan Province (2018SK2060) and Scientific and Technological Department Projects in Hunan Province (2017SK50802). There are no competing interests. TRIAL REGISTRATION NUMBER N/A.

Funder

Major Scientific and Technological Projects for Collaborative Prevention and Control of Birth Defects in Hunan Province

Major Research and Development Projects in Hunan Province

Scientific and Technological Department Projects in Hunan Province

Publisher

Oxford University Press (OUP)

Subject

Obstetrics and Gynaecology,Rehabilitation,Reproductive Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3