Generative artificial intelligence to produce high-fidelity blastocyst-stage embryo images

Author:

Cao Ping12ORCID,Derhaag Josien3,Coonen Edith13,Brunner Han124,Acharya Ganesh56,Salumets Andres578ORCID,Zamani Esteki Masoud125ORCID

Affiliation:

1. Department of Clinical Genetics, Maastricht University Medical Center+ (MUMC+) , Maastricht, The Netherlands

2. Department of Genetics and Cell Biology, GROW Research Institute for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University , Maastricht, The Netherlands

3. Department of Reproductive Medicine, Maastricht University Medical Center+ (MUMC+) , Maastricht, The Netherlands

4. Department of Human Genetics, Radboud University Medical Center , Nijmegen, The Netherlands

5. Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, and Karolinska University Hospital , Stockholm, Sweden

6. Women’s Health and Perinatology Research Group, Department of Clinical Medicine, UiT—The Arctic University of Norway , Tromsø, Norway

7. Competence Centre on Health Technologies , Tartu, Estonia

8. Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu , Tartu, Estonia

Abstract

Abstract STUDY QUESTION Can generative artificial intelligence (AI) models produce high-fidelity images of human blastocysts? SUMMARY ANSWER Generative AI models exhibit the capability to generate high-fidelity human blastocyst images, thereby providing substantial training datasets crucial for the development of robust AI models. WHAT IS KNOWN ALREADY The integration of AI into IVF procedures holds the potential to enhance objectivity and automate embryo selection for transfer. However, the effectiveness of AI is limited by data scarcity and ethical concerns related to patient data privacy. Generative adversarial networks (GAN) have emerged as a promising approach to alleviate data limitations by generating synthetic data that closely approximate real images. STUDY DESIGN, SIZE, DURATION Blastocyst images were included as training data from a public dataset of time-lapse microscopy (TLM) videos (n = 136). A style-based GAN was fine-tuned as the generative model. PARTICIPANTS/MATERIALS, SETTING, METHODS We curated a total of 972 blastocyst images as training data, where frames were captured within the time window of 110–120 h post-insemination at 1-h intervals from TLM videos. We configured the style-based GAN model with data augmentation (AUG) and pretrained weights (Pretrained-T: with translation equivariance; Pretrained-R: with translation and rotation equivariance) to compare their optimization on image synthesis. We then applied quantitative metrics including Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) to assess the quality and fidelity of the generated images. Subsequently, we evaluated qualitative performance by measuring the intelligence behavior of the model through the visual Turing test. To this end, 60 individuals with diverse backgrounds and expertise in clinical embryology and IVF evaluated the quality of synthetic embryo images. MAIN RESULTS AND THE ROLE OF CHANCE During the training process, we observed consistent improvement of image quality that was measured by FID and KID scores. Pretrained and AUG + Pretrained initiated with remarkably lower FID and KID values compared to both Baseline and AUG + Baseline models. Following 5000 training iterations, the AUG + Pretrained-R model showed the highest performance of the evaluated five configurations with FID and KID scores of 15.2 and 0.004, respectively. Subsequently, we carried out the visual Turing test, such that IVF embryologists, IVF laboratory technicians, and non-experts evaluated the synthetic blastocyst-stage embryo images and obtained similar performance in specificity with marginal differences in accuracy and sensitivity. LIMITATIONS, REASONS FOR CAUTION In this study, we primarily focused the training data on blastocyst images as IVF embryos are primarily assessed in blastocyst stage. However, generation of an array of images in different preimplantation stages offers further insights into the development of preimplantation embryos and IVF success. In addition, we resized training images to a resolution of 256 × 256 pixels to moderate the computational costs of training the style-based GAN models. Further research is needed to involve a more extensive and diverse dataset from the formation of the zygote to the blastocyst stage, e.g. video generation, and the use of improved image resolution to facilitate the development of comprehensive AI algorithms and to produce higher-quality images. WIDER IMPLICATIONS OF THE FINDINGS Generative AI models hold promising potential in generating high-fidelity human blastocyst images, which allows the development of robust AI models as it can provide sufficient training datasets while safeguarding patient data privacy. Additionally, this may help to produce sufficient embryo imaging training data with different (rare) abnormal features, such as embryonic arrest, tripolar cell division to avoid class imbalances and reach to even datasets. Thus, generative models may offer a compelling opportunity to transform embryo selection procedures and substantially enhance IVF outcomes. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by a Horizon 2020 innovation grant (ERIN, grant no. EU952516) and a Horizon Europe grant (NESTOR, grant no. 101120075) of the European Commission to A.S. and M.Z.E., the Estonian Research Council (grant no. PRG1076) to A.S., and the EVA (Erfelijkheid Voortplanting & Aanleg) specialty program (grant no. KP111513) of Maastricht University Medical Centre (MUMC+) to M.Z.E. TRIAL REGISTRATION NUMBER Not applicable.

Funder

Horizon Europe

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3