Synthetic Genitourinary Image Synthesis via Generative Adversarial Networks: Enhancing Artificial Intelligence Diagnostic Precision

Author:

Van Booven Derek J.1ORCID,Chen Cheng-Bang2ORCID,Malpani Sheetal3,Mirzabeigi Yasamin3,Mohammadi Maral4,Wang Yujie2,Kryvenko Oleksander N.3,Punnen Sanoj5,Arora Himanshu1456ORCID

Affiliation:

1. John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA

2. Department of Industrial and Systems Engineering, University of Miami, Coral Gables, FL 33146, USA

3. Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA

4. Department of Pathology, University of Debrecen in Hungary, 4032 Debrecen, Hungary

5. Desai & Sethi Institute of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA

6. The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA

Abstract

Introduction: In the realm of computational pathology, the scarcity and restricted diversity of genitourinary (GU) tissue datasets pose significant challenges for training robust diagnostic models. This study explores the potential of Generative Adversarial Networks (GANs) to mitigate these limitations by generating high-quality synthetic images of rare or underrepresented GU tissues. We hypothesized that augmenting the training data of computational pathology models with these GAN-generated images, validated through pathologist evaluation and quantitative similarity measures, would significantly enhance model performance in tasks such as tissue classification, segmentation, and disease detection. Methods: To test this hypothesis, we employed a GAN model to produce synthetic images of eight different GU tissues. The quality of these images was rigorously assessed using a Relative Inception Score (RIS) of 1.27 ± 0.15 and a Fréchet Inception Distance (FID) that stabilized at 120, metrics that reflect the visual and statistical fidelity of the generated images to real histopathological images. Additionally, the synthetic images received an 80% approval rating from board-certified pathologists, further validating their realism and diagnostic utility. We used an alternative Spatial Heterogeneous Recurrence Quantification Analysis (SHRQA) to assess the quality of prostate tissue. This allowed us to make a comparison between original and synthetic data in the context of features, which were further validated by the pathologist’s evaluation. Future work will focus on implementing a deep learning model to evaluate the performance of the augmented datasets in tasks such as tissue classification, segmentation, and disease detection. This will provide a more comprehensive understanding of the utility of GAN-generated synthetic images in enhancing computational pathology workflows. Results: This study not only confirms the feasibility of using GANs for data augmentation in medical image analysis but also highlights the critical role of synthetic data in addressing the challenges of dataset scarcity and imbalance. Conclusions: Future work will focus on refining the generative models to produce even more diverse and complex tissue representations, potentially transforming the landscape of medical diagnostics with AI-driven solutions.

Funder

Scott R. MacKenzie Foundation

University of Miami U-LINK

Provost Research Award

NIH/NCI

Paps Corps Champions for Cancer Research

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3