Insights into How Spinosad Seed Treatment Protects Onion From Onion Maggot (Diptera: Anthomyiidae)

Author:

Moretti Erica A1ORCID,Taylor Alan G2,Wickings Kyle1,Nault Brian A1

Affiliation:

1. Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY

2. Department of Horticulture, Cornell University, Cornell AgriTech, Geneva, NY

Abstract

Abstract Onion maggot, Delia antiqua (Meigen), is a serious pest of onion Allium cepa L. in northern temperate regions. Over the last decade, D. antiqua has been managed principally using a pesticide seed treatment package containing the reduced-risk insecticide spinosad. While spinosad protects onion seedlings from D. antiqua, very little is known regarding how protection occurs. The main objectives of this study were to assess susceptibility of 1- and 2-wk-old larvae to spinosad through two different modes of exposure: ingestion and contact, and to evaluate larval feeding behavior in choice and no-choice tests with onion seedlings grown from treated and untreated seeds. Results showed that spinosad was more than twice as lethal to 1-wk than 2-wk-old larvae when it was ingested, but was equally toxic to both larval ages via contact exposure. In choice assays, larvae preferred feeding on untreated plants; however, without a choice, larvae fed and survived equally well on untreated and treated plants, suggesting that spinosad may have a deterrent effect. In a field study, levels of spinosad within young onion plants and in the soil around roots were monitored in addition to the cumulative number of onion seedlings killed by D. antiqua. Spinosad was detected in the soil and in both aboveground and belowground plant tissue, indicating that spinosad translocates into foliage, but declines in plant tissue and soil as plant mortality from D. antiqua feeding increases. Together, these results provide valuable insight into how spinosad protects onion seedlings and reveal key areas in need of further investigation.

Funder

United States Hatch Funds

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3