Entomopathogenic Nematodes for Field Control of Onion Maggot (Delia antiqua) and Compatibility with Seed Treatments

Author:

Filgueiras Camila C.1ORCID,Shields Elson J.2,Nault Brian A.3,Willett Denis S.4

Affiliation:

1. Department of Biology, University of North Carolina Asheville, One University Heights, Asheville, NC 28804, USA

2. Department of Entomology, Cornell University, 2126 Comstock Hall, Ithaca, NY 14853, USA

3. Department of Entolomogy, Cornell University, Cornell AgriTech, 15 Castle Creek Drive, Geneva, NY 14456, USA

4. North Carolina Institute for Climate Studies, North Carolina State University, 151 Patton Avenue, Asheville, NC 28801, USA

Abstract

Onion maggot (Delia antiqua) is a prominent pest of allium crops in temperate zones worldwide. Management of this pest relies on prophylactic insecticide applications at planting that target the first generation. Because effective options are limited, growers are interested in novel tactics such as deployment of entomopathogenic nematodes. We surveyed muck soils where onions are typically grown to determine if entomopathogenic nematode species were present, and then evaluated the compatibility of entomopathogenic nematode species with the insecticides commonly used to manage D. antiqua. We also evaluated the efficacy of these entomopathogenic nematodes for reducing D. antiqua infestations in the field. No endemic entomopathogenic nematodes were detected in surveys of muck fields in New York. Compatibility assays indicated that, although insecticides such as spinosad and, to some extent, cyromazine did cause mortality of entomopathogenic nematodes, these insecticides did not affect infectivity of the entomopathogenic nematodes. Field trials indicated that applications of entomopathogenic nematodes can reduce the percentage of onion plants killed by D. antiqua from 6% to 30%. Entomopathogenic nematodes reduced D. antiqua damage and increased end of season yield over two field seasons. Applications of entomopathogenic nematodes may be a viable option for reducing D. antiqua populations in conventional and organic systems. Together with other management tactics, like insecticide seed treatments, applications of entomopathogenic nematodes can provide a yield boost and a commercially acceptable level of D. antiqua control.

Funder

New York Farm Viability Specialty Crop Block Grant

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3