Variations in phenological, physiological, plant architectural and yield-related traits, their associations with grain yield and genetic basis

Author:

Li Yibo12,Tao Fulu123,Hao Yuanfeng4,Tong Jingyang4,Xiao Yonggui4,He Zhonghu4,Reynolds Matthew5ORCID

Affiliation:

1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS , Beijing 100101 , China

2. University of Chinese Academy of Sciences , Beijing 100049 , China

3. Natural Resources Institute Finland (Luke) , Helsinki , Finland

4. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences , Beijing 100081 , China

5. International Maize and Wheat Improvement Center (CIMMYT) , Texcoco , Mexico

Abstract

AbstractBackground and AimsPhysiological and morphological traits play essential roles in wheat (Triticum aestivum) growth and development. In particular, photosynthesis is a limitation to yield. Increasing photosynthesis in wheat has been identified as an important strategy to increase yield. However, the genotypic variations and the genomic regions governing morphological, architectural and photosynthesis traits remain unexplored.MethodsHere, we conducted a large-scale investigation of the phenological, physiological, plant architectural and yield-related traits, involving 32 traits for 166 wheat lines during 2018–2020 in four environments, and performed a genome-wide association study with wheat 90K and 660K single nucleotide polymorphism (SNP) arrays.Key ResultsThese traits exhibited considerable genotypic variations in the wheat diversity panel. Higher yield was associated with higher net photosynthetic rate (r = 0.41, P < 0.01), thousand-grain weight (r = 0.36, P < 0.01) and truncated and lanceolate shape, but shorter plant height (r = −0.63, P < 0.01), flag leaf angle (r = −0.49, P < 0.01) and spike number per square metre (r = −0.22, P < 0.01). Genome-wide association mapping discovered 1236 significant stable loci detected in the four environments among the 32 traits using SNP markers. Trait values have a cumulative effect as the number of the favourable alleles increases, and significant progress has been made in determining phenotypic values and favourable alleles over the years. Eleven elite cultivars and 14 traits associated with grain yield per plot (GY) were identified as potential parental lines and as target traits to develop high-yielding cultivars.ConclusionsThis study provides new insights into the phenotypic and genetic elucidation of physiological and morphological traits in wheat and their associations with GY, paving the way for discovering their underlying gene control and for developing enhanced ideotypes in wheat breeding.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3