Leaf optical properties and photosynthesis of fern species with a wide range of divergence time in relation to mesophyll anatomy

Author:

Hanba Yuko T1ORCID,Nishida Keisuke1,Tsutsui Yuuri1,Matsumoto Mayu1,Yasui Yutarou1,Sizhe Yang1,Matsuura Takumi1,Kawaguchi Akitsu Tomoko2,Kume Atsushi3

Affiliation:

1. Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto 606-8585 , Japan

2. Earth Observation Research Center, Japan Aerospace Exploration Agency , 2-1-1 Sengen, Tsukuba 305-8505 , Japan

3. Faculty of Agriculture, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395 , Japan

Abstract

AbstractBackground and AimsFor a comprehensive understanding of the mechanisms of changing plant photosynthetic capacity during plant evolutionary history, knowledge of leaf gas exchange and optical properties are essential, both of which relate strongly to mesophyll anatomy. Although ferns are suitable for investigating the evolutionary history of photosynthetic capacity, comprehensive research of fern species has yet to be undertaken in this regard.MethodsWe investigated leaf optical properties, gas exchange and mesophyll anatomy of fern species with a wide range of divergence time, using 66 ferns from natural habitats and eight glasshouse-grown ferns. We used a spectroradiometer and an integrating sphere to measure light absorptance and reflectance by the leaves.Key ResultsThe more newly divergent fern species had a thicker mesophyll, a larger surface area of chloroplasts facing the intercellular airspaces (Sc), thicker cell walls and large light absorptance. Although no trend with divergence time was obtained in leaf photosynthetic capacity on a leaf-area basis, when the traits were expressed on a mesophyll-thickness basis, trends in leaf photosynthetic capacity became apparent. On a mesophyll-thickness basis, the more newly divergent species had a low maximum photosynthesis rate, accompanied by a low Sc.ConclusionsWe found a strong link between light capture, mesophyll anatomy and photosynthesis rate in fern species for the first time. The thick mesophyll of the more newly divergent ferns does not necessarily relate to the high photosynthetic capacity on a leaf-area basis. Rather, the thick mesophyll accompanied by thick cell walls allowed the ferns to adapt to a wider range of environments through increasing leaf toughness, which would contribute to the diversification of fern species.

Funder

Grant-in-Aid for Scientific Research

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3