Leaf anatomy affects optical properties and enhances photosynthetic performance under oblique light

Author:

Nikolopoulos Dimosthenis1,Bresta Panagiota2,Daliani Vassiliki1,Haghiou Vassiliki1,Darra Nikoleta1,Liati Maria1,Mavrogianni Evita1,Papanastasiou Antonia1,Porfyraki Theodora1,Psaroudi Varvara1,Karabourniotis George1,Liakopoulos Georgios1ORCID

Affiliation:

1. Laboratory of Plant Physiology and Morphology Athens Greece

2. Laboratory of Electron Microscopy, Department of Crop Science, School of Plant Sciences Agricultural University of Athens Athens Greece

Abstract

AbstractPhotosynthesis under oblique illumination has not been studied extensively despite being the prevailing light regime under natural conditions. We studied how photosynthetic rate (An) is affected by the geometrical arrangement between leaf lamina and light rays, in conjunction with key anatomical features; studied plant species selected based on the absence (homobaric) or the occurrence of bundle sheath extensions (BSEs; heterobaric) and the arrangement of these structures, that is, parallel (monocots) or reticulated (dicots). The direction of light ray affected leaf absorptance (Abs) and An; both were maximal when the angle of incidence of light on leaf surface (polar angle, θ) was 90°. For any lower θ, both Abs and An were higher when the angle between the leaf axis and the light rays (azimuthal angle, φ) was zero. The dependence of Abs and An from φ was only evident in monocots and, especially, in heterobaric compared to homobaric leaves. In some species, An was substantially higher than predicted from calculated photon flux density of oblique light. The occurrence of BSEs, especially in monocots, significantly alters leaf optical properties, resulting in more efficient photosynthesis under oblique illumination conditions.

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3