Butyrate promotes slow-twitch myofiber formation and mitochondrial biogenesis in finishing pigs via inducing specific microRNAs and PGC-1α expression1

Author:

Zhang Yong12,Yu Bing1,Yu Jie1,Zheng Ping1,Huang Zhiqing1,Luo Yuheng1,Luo Junqiu1,Mao Xiangbing1,Yan Honglin12,He Jun1,Chen Daiwen1

Affiliation:

1. Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, People’s Republic of China

2. School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, People’s Republic of China

Abstract

Abstract The present study aimed to investigate the influence of dietary butyrate supplementation on muscle fiber-type composition and mitochondrial biogenesis of finishing pigs, and the underlying mechanisms. Thirty-two LY (Landrace × Yorkshire) growing pigs with BW of 64.9 ± 5.7 kg were randomly allotted to either control (basal diet) or butyrate diets (0.3% butyrate sodium). Compared with the control group, diet supplemented with butyrate tended to increase average daily gain (P < 0.10). Pigs fed butyrate diet had higher intramuscular fat content, marbling score and pH24 h, and lower shear force and L*24 h in longissimus thoracis (LT) muscle than that fed control diet (P < 0.05). Interestingly, supplemented with butyrate increased (P < 0.05) the mRNA level of myosin heavy chain I (MyHC-I) and the percentage of slow-fibers, and decreased (P < 0.05) the mRNA level of MyHC-IIb in LT muscle. Meanwhile, pigs in butyrate group had an increase in mitochondrial DNA (mtDNA) copy number and the mRNA levels of mtDNA-encoded genes (P < 0.05). Moreover, feeding butyrate diet increased PGC-1α (PPAR γ coactivator 1α) level, decreased miR-133a-3p level and increased its target gene level (TEAD1, TEA domain transcription factor 1), increased miR-208b and miR-499-5p levels and decreased their target genes levels (Sp3 and Sox6, specificity protein 3 and SRY-box containing gene 6; P < 0.05) in the LT muscle. Collectively, these findings suggested that butyrate promoted slow-twitch myofiber formation and mitochondrial biogenesis, and the molecular mechanism may be via upgrading specific microRNAs and PGC-1α expression, finally improving meat quality.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3