Estimating disease prevalence from drug utilization data using the Random Forest algorithm

Author:

Slobbe Laurentius C J12,Füssenich Koen13,Wong Albert1,Boshuizen Hendriek C14,Nielen Markus M J55,Polder Johan J12,Feenstra Talitha L13,van Oers Hans A M12

Affiliation:

1. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands

2. Tilburg University, Department Tranzo, Tilburg, The Netherlands

3. Groningen University, University Medical Center, Department of Epidemiology, Groningen, The Netherlands

4. Wageningen University and Research, Wageningen, The Netherlands

5. Netherlands Institute for Health Services Research (NIVEL), Utrecht, The Netherlands

Abstract

Abstract Background Aggregated claims data on medication are often used as a proxy for the prevalence of diseases, especially chronic diseases. However, linkage between medication and diagnosis tend to be theory based and not very precise. Modelling disease probability at an individual level using individual level data may yield more accurate results. Methods Individual probabilities of having a certain chronic disease were estimated using the Random Forest (RF) algorithm. A training set was created from a general practitioners database of 276 723 cases that included diagnosis and claims data on medication. Model performance for 29 chronic diseases was evaluated using Receiver-Operator Curves, by measuring the Area Under the Curve (AUC). Results The diseases for which model performance was best were Parkinson’s disease (AUC = .89, 95% CI = .77–1.00), diabetes (AUC = .87, 95% CI = .85–.90), osteoporosis (AUC = .87, 95% CI = .81–.92) and heart failure (AUC = .81, 95% CI = .74–.88). Five other diseases had an AUC >.75: asthma, chronic enteritis, COPD, epilepsy and HIV/AIDS. For 16 of 17 diseases tested, the medication categories used in theory-based algorithms were also identified by our method, however the RF models included a broader range of medications as important predictors. Conclusion Data on medication use can be a useful predictor when estimating the prevalence of several chronic diseases. To improve the estimates, for a broader range of chronic diseases, research should use better training data, include more details concerning dosages and duration of prescriptions, and add related predictors like hospitalizations.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3