Mechanistic understanding of antibiotic resistance mediated by EnvZ/OmpR two-component system in Salmonella enterica serovar Enteritidis

Author:

Ko Duhyun12,Choi Sang Ho123

Affiliation:

1. National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University , Seoul , Republic of Korea

2. Center for Food and Bioconvergence, Seoul National University , Seoul , Republic of Korea

3. Research Institute of Agriculture and Life Sciences, Seoul National University , Seoul , Republic of Korea

Abstract

Abstract Background Outer membrane porins (OMPs) are a major route for the entry of small hydrophilic antibiotics. Thus, compositional modulation of OMPs is often accompanied by multidrug resistance in a human pathogen Salmonella enterica serovar Enteritidis. Objectives The role of EnvZ/OmpR two-component system in antibiotic resistance has not been established except that it regulates the expression of two OMPs, OmpC and OmpF. Here, we have gained mechanistic insight into EnvZ/OmpR-mediated antibiotic resistance in S. Enteritidis. Methods The envZP248L and envZH243A strains, mimicking the S. Enteritidis strains with active and inactive states of EnvZ/OmpR, were used in this study. Antibiotic resistance was determined by the broth microdilution method and the spot plating assay. Transcriptomes of the S. Enteritidis strains were analysed by RNA-seq. Western blot, quantitative reverse transcription–PCR, electrophoretic mobility shift assays and β-galactosidase activity assays were performed. Results The active state of EnvZ/OmpR induced a differential expression of multiple OMP genes including SEN1522, SEN2875, ompD and ompW, enhancing resistance to β-lactams in S. Enteritidis. OmpR directly activated SEN1522 and SEN2875 but repressed ompD and ompW. Interestingly, an increased cellular level of OmpR determined the expression of the four OMP genes, and phosphorylation of OmpR was even not necessary for the repression of ompD and ompW. EnvZ/OmpR increased its own expression in response to β-lactams, decreasing outer membrane permeability and providing S. Enteritidis with benefits for survival upon exposure to the antibiotics. Conclusions EnvZ/OmpR remodels OMP composition in response to β-lactams and thereby enhances antibiotic resistance in S. Enteritidis.

Funder

National Research Foundation of Korea

NRF

MSIT

Ministry of Food and Drug Safety

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3