Affiliation:
1. Department of Chemistry, UiT The Arctic University of Norway , Tromsø , Norway
2. Department of Pharmacy, UiT The Arctic University of Norway , Tromsø , Norway
3. Michael Smith Laboratories, University of British Columbia , Vancouver, BC , Canada
4. Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway , Tromsø , Norway
Abstract
Abstract
Background
Cefiderocol is a novel siderophore β-lactam with improved hydrolytic stability toward β-lactamases, including carbapenemases, achieved by combining structural moieties of two clinically efficient cephalosporins, ceftazidime and cefepime. Consequently, cefiderocol represents a treatment alternative for infections caused by MDR Gram-negatives.
Objectives
To study the role of cefiderocol on resistance development and on the evolution of β-lactamases from all Ambler classes, including KPC-2, CTX-M-15, NDM-1, CMY-2 and OXA-48.
Methods
Directed evolution, using error-prone PCR followed by selective plating, was utilized to investigate how the production and the evolution of different β-lactamases cause changes in cefiderocol susceptibility determined using microbroth dilution assays (MIC and IC50).
Results
We found that the expression of blaOXA-48 did not affect cefiderocol susceptibility. On the contrary, the expression of blaKPC-2, blaCMY-2, blaCTX-M-15 and blaNDM-1 substantially reduced cefiderocol susceptibility by 4-, 16-, 8- and 32-fold, respectively. Further, directed evolution on these enzymes showed that, with the acquisition of only 1–2 non-synonymous mutations, all β-lactamases were evolvable to further cefiderocol resistance by 2- (NDM-1, CTX-M-15), 4- (CMY-2), 8- (OXA-48) and 16-fold (KPC-2). Cefiderocol resistance development was often associated with collateral susceptibility changes including increased resistance to ceftazidime and ceftazidime/avibactam as well as functional trade-offs against different β-lactam drugs.
Conclusions
The expression of contemporary β-lactamase genes can potentially contribute to cefiderocol resistance development and the acquisition of mutations in these genes results in enzymes adapting to increasing cefiderocol concentrations. Resistance development caused clinically important cross-resistance, especially against ceftazidime and ceftazidime/avibactam.
Funder
UiT The Arctic University of Norway
Northern Norway Regional Health Authority
The National Graduate School in Biocatalysis
The Norwegian PhD School of Pharmacy
The Graduate School in Infection Biology and Antimicrobials
Publisher
Oxford University Press (OUP)
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献