Loss-of-function and gain-of-function studies refute the hypothesis that tau protein is causally involved in the pathogenesis of Huntington’s disease

Author:

Mees Isaline1,Li Shanshan1,Beauchamp Leah C1234,Barnham Kevin J1234,Dutschmann Mathias1,Hannan Anthony J156,Renoir Thibault156ORCID

Affiliation:

1. Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville, VIC 3052, Australia

2. Melbourne Dementia Research Centre, University of Melbourne , Parkville, VIC 3052, Australia

3. Department of Pharmacology and Therapeutics , , Parkville, VIC 3052, Australia

4. University of Melbourne , , Parkville, VIC 3052, Australia

5. Faculty of Medicine , Dentistry and Health Sciences, , Parkville, VIC 3052, Australia

6. University of Melbourne , Dentistry and Health Sciences, , Parkville, VIC 3052, Australia

Abstract

Abstract Tubulin-associated unit (Tau) is a microtubule-associated protein, whose abnormal phosphorylation and deposition in the brain characterizes a range of neurodegenerative diseases called tauopathies. Recent clinical (post-mortem) and pre-clinical evidence suggests that Huntington’s disease (HD), an autosomal dominant neurodegenerative disorder, could be considered as a tauopathy. Studies have found the presence of hyperphosphorylated tau, altered tau isoform ratio and aggregated tau in HD brains. However, little is known about the implication of tau in the development of HD pathophysiology, which includes motor, cognitive and affective symptoms. To shine a light on the involvement of tau in HD, our present study aimed at (i) knocking out tau expression and (ii) expressing a transgene encoding mutant human tau in the R6/1 mouse model of HD. We hypothesized that expression of the mutant human tau transgene in HD mice would worsen the HD phenotype, while knocking out endogenous mouse tau in HD mice would improve some behavioral deficits displayed by HD mice. Our data suggest that neither the expression of a tau transgene nor the ablation of tau expression impacted the progression of the HD motor, cognitive and affective phenotypes. Supporting these behavioral findings, we also found that modulating tau expression had no effect on brain weights in HD mice. We also report that expression of the tau transgene increased the weight of WT and HD male mice, whereas tau ablation increased the weight of HD females only. Together, our results indicate that tau might not be as important in regulating the onset and progression of HD symptomatology as previously proposed.

Funder

National Health and Medical Research Council

NHMRC Principal Research Fellow

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3