Gut bacterial communities in Atlantic bottlenose dolphins (Tursiops truncatus) throughout a disease-driven (Morbillivirus) unusual mortality event

Author:

Olmstead Alyssa R B1,Mathieson Olivia L1,McLellan William A1,Pabst D Ann1,Keenan Tiffany F1,Goldstein Tracey2,Erwin Patrick M1ORCID

Affiliation:

1. Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington , Wilmington, NC 28409 , United States

2. Zoological Pathology Program, University of Illinois at Urbana-Champaign , 3300 Golf Road, Brookfield, IL 60513 , United States

Abstract

Abstract Gut microbiomes are important determinants of animal health. In sentinel marine mammals where animal and ocean health are connected, microbiome impacts can scale to ecosystem-level importance. Mass mortality events affect cetacean populations worldwide, yet little is known about the contributory role of their gut bacterial communities to disease susceptibility and progression. Here, we characterized bacterial communities from fecal samples of common bottlenose dolphins, Tursiops truncatus, across an unusual mortality event (UME) caused by dolphin Morbillivirus (DMV). 16S rRNA gene sequence analysis revealed similar diversity and structure of bacterial communities in individuals stranding before, during, and after the 2013–2015 Mid-Atlantic Bottlenose Dolphin UME and these trends held in a subset of dolphins tested by PCR for DMV infection. Fine-scale shifts related to the UME were not common (10 of 968 bacterial taxa) though potential biomarkers for health monitoring were identified within the complex bacterial communities. Accordingly, acute DMV infection was not associated with a distinct gut bacterial community signature in T. truncatus. However, temporal stratification of DMV-positive dolphins did reveal changes in bacterial community composition between early and late outbreak periods, suggesting that gut community disruptions may be amplified by the indirect effects of accumulating health burdens associated with chronic morbidity.

Funder

NOAA

UNCW

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3