Seasonal dynamics of the microbial methane filter in the water column of a eutrophic coastal basin

Author:

Venetz Jessica1ORCID,Żygadłowska Olga M2,Dotsios Nicky1,Wallenius Anna J1,van Helmond Niels A G M12,Lenstra Wytze K12ORCID,Klomp Robin12,Slomp Caroline P12,Jetten Mike S M1ORCID,Veraart Annelies J3ORCID

Affiliation:

1. Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University , 6525 AJ Nijmegen , The Netherlands

2. Department of Earth Sciences, Faculty of Geosciences, Utrecht University , 3508 TA Utrecht , The Netherlands

3. Department of Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University , 6525 AJ Nijmegen , The Netherlands

Abstract

Abstract In coastal waters, methane-oxidizing bacteria (MOB) can form a methane biofilter and mitigate methane emissions. The metabolism of these MOBs is versatile, and the resilience to changing oxygen concentrations is potentially high. It is still unclear how seasonal changes in oxygen availability and water column chemistry affect the functioning of the methane biofilter and MOB community composition. Here, we determined water column methane and oxygen depth profiles, the methanotrophic community structure, methane oxidation potential, and water–air methane fluxes of a eutrophic marine basin during summer stratification and in the mixed water in spring and autumn. In spring, the MOB diversity and relative abundance were low. Yet, MOB formed a methane biofilter with up to 9% relative abundance and vertical niche partitioning during summer stratification. The vertical distribution and potential methane oxidation of MOB did not follow the upward shift of the oxycline during summer, and water–air fluxes remained below 0.6 mmol m−2 d−1. Together, this suggests active methane removal by MOB in the anoxic water. Surprisingly, with a weaker stratification, and therefore potentially increased oxygen supply, methane oxidation rates decreased, and water–air methane fluxes increased. Thus, despite the potential resilience of the MOB community, seasonal water column dynamics significantly influence methane removal.

Funder

European Research Council

NESSC

NWO

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3