Distinct co-occurrence patterns of prokaryotic community between the waters and sediments in lakes with different salinity

Author:

Yang Jian1,Jiang Hongchen12ORCID,Sun Xiaoxi1,Huang Jianrong1,Han Mingxian1,Wang Beichen1

Affiliation:

1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China

2. Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

Abstract

ABSTRACT Temporal variations and co-occurrence patterns of the prokaryotic community in saline lakes remain elusive. In this study, we investigated the temporal variations of the prokaryotic community in six lakes with different salinity by using Illumina sequencing. The results showed that prokaryotic community compositions exhibited temporal variations in all studied lakes, which may be partially caused by temporal fluctuations of environmental variables (e.g. salinity, temperature, total nitrogen). Salinity fluctuations exhibited stronger influences on temporal variations of prokaryotic community composition in the lakes with low salinity than in those with high salinity. Stochastic factors (i.e. neutral processes) also contributed to temporal variations of prokaryotic community composition, and their contributions decreased with increasing salinity in the studied saline lakes. Network analysis showed that prokaryotic co-occurrence networks of the studied lakes exhibited non-random topology. Salinity affected the phylogenetic composition of nodes in the studied networks. The topological features (e.g. average connectivity and modularity) of the studied networks significantly differed between lake waters and sediments. Collectively, these results expand our knowledge of the mechanisms underlying prokaryotic community assembly and co-occurrence relationships in saline lakes with different salinity.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3