Bacterial and Microeukaryotic Community Compositions and Their Assembly Processes in Lakes on the Eastern Qinghai-Tibet Plateau

Author:

Wang Dandan123,Huang Yuefei1234,Jia Haichao1,Yang Haijiao123

Affiliation:

1. School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China

2. Key Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, Qinghai University, Xining 810016, China

3. Key Laboratory of Water Ecological Remediation and Protection at Headwater Regions of Big Rivers, Qinghai University, Xining 810016, China

4. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China

Abstract

Bacterial and microeukaryotic community compositions and their assembly processes have remained challenging and remained unclear in lake ecosystems on the Qinghai-Tibet Plateau (QTP). We revealed the diversity and community compositions, driving factors, ecological assembly processes, and co-occurrence networks of bacterial and microeukaryotic communities in water bodies of the eight lake ecosystems across the Eastern QTP. The results demonstrated that the predominant bacteria in most samples were Proteobacteria, with an average relative abundance of 41.78%, whereas the most abundant of microeukaryotes differed among the sample sites. The redundancy analysis revealed that latitude and pH were the most important driving factors in shaping the bacterial and microeukaryotic community compositions. Homogeneous selection (56.40%) was the dominant process in assembling the bacterial communities, whereas dispersal limitation (67.24%) was the major process in governing the microeukaryotic communities. Furthermore, dissolved organic carbon and salinity were the major factors mediating the balance of deterministic and stochastic assembly processes in the bacterial and microeukaryotic communities. Both the bacterial and microeukaryotic community co-occurrence networks exhibited topological features of modularity and non-random topological features. The results offer insights into the mechanisms underpinning bacterial and microeukaryotic diversities and communities in the lake ecosystems on the QTP.

Funder

Research on the Application of Multi-Source Water Conservancy Ecological Big Data in River and Lake Monitoring and Management

Microbial Diversity and Community Structure of Lakes with Different Salinity in the Qaidam Basin and their Driving Mechanisms

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3