Bacterial community assembly in Atlantic cod larvae (Gadus morhua): contributions of ecological processes and metacommunity structure

Author:

Vestrum Ragnhild I1ORCID,Attramadal Kari J K1,Vadstein Olav1,Gundersen Madeleine Stenshorne1,Bakke Ingrid1

Affiliation:

1. Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway

Abstract

ABSTRACT Many studies demonstrate the importance of the commensal microbiomes to animal health and development. However, the initial community assembly process is poorly understood. It is unclear to what extent the hosts select for their commensal microbiota, whether stochastic processes contribute, and how environmental conditions affect the community assembly. We investigated community assembly in Atlantic cod larvae exposed to distinct microbial metacommunities. We aimed to quantify ecological processes influencing community assembly in cod larvae and to elucidate the complex relationship between the bacteria of the environment and the fish. Selection within the fish was the major determinant for community assembly, but drift resulted in inter-individual variation. The environmental bacterial communities were highly dissimilar from those associated with the fish. Still, differences in the environmental bacterial communities strongly influenced the fish communities. The most striking difference was an excessive dominance of a single OTU (Arcobacter) for larvae reared in two of the three systems. These larvae were exposed to environments with higher fractions of opportunistic bacteria, and we hypothesise that detrimental host–microbe interactions might have made the fish susceptible to Arcobacter colonisation. Despite strong selection within the host, this points to a possibility to steer the metacommunity towards mutualistic host–microbe interactions and improved fish health and survival.

Funder

Faculty of Natural Sciences

Norwegian University of Science and Technology

European Community's Seventh Framework Programme

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3