Early-Life Fecal Transplantation from High Muscle Yield Rainbow Trout to Low Muscle Yield Recipients Accelerates Somatic Growth through Respiratory and Mitochondrial Efficiency Modulation

Author:

Raymo Guglielmo1ORCID,Ali Ali1ORCID,Ahmed Ridwan O.1,Salem Mohamed1ORCID

Affiliation:

1. Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742-231, USA

Abstract

Previous studies conducted in our lab revealed microbial assemblages to vary significantly between high (ARS-FY-H) and low fillet yield (ARS-FY-L) genetic lines in adult rainbow trout. We hypothesized that a high ARS-FY-H donor microbiome can accelerate somatic growth in microbiome-depleted rainbow trout larvae of the ARS-FY-L line. Germ-depleted larvae of low ARS-FY-L line trout reared in sterile environments were exposed to high- or low-fillet yield-derived microbiomes starting at first feeding for 27 weeks. Despite weight-normalized diets, somatic mass was significantly increased in larvae receiving high fillet yield microbiome cocktails at 27 weeks post-hatch. RNA-seq from fish tails reveals enrichment in NADH dehydrogenase activity, oxygen carrier, hemoglobin complex, gas transport, and respiratory pathways in high fillet yield recolonized larvae. Transcriptome interrogation suggests a relationship between electron transport chain inputs and body weight assimilation, mediated by the gut microbiome. These findings suggest that microbiome payload originating from high fillet yield adult donors primarily accelerates juvenile somatic mass assimilation through respiratory and mitochondrial input modulation. Further microbiome studies are warranted to assess how increasing beneficial microbial taxa could be a basis for formulating appropriate pre-, pro-, or post-biotics in the form of feed additives and lead to fecal transplantation protocols for accelerated feed conversion and fillet yield in aquaculture.

Funder

United States Department of Agriculture, National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3