Temporal dynamics in the taxonomic and functional profile of the Sphagnum-associated fungi (mycobiomes) in a Sphagnum farming field site in Northwestern Germany

Author:

Borg Dahl Mathilde1ORCID,Krebs Matthias2,Unterseher Martin23,Urich Tim1,Gaudig Greta2ORCID

Affiliation:

1. Institute of Microbiology, University of Greifswald, Partner in the Greifswald Mire Centre, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany

2. Institute of Botany and Landscape Ecology, University of Greifswald, Partner in the Greifswald Mire Centre, Soldmannstr. 15, 17489, Greifswald, Germany

3. Montessori-Schule, Helsinkiring 5, 17493, Greifswald, Germany

Abstract

ABSTRACT The drainage of peatlands for their agricultural use leads to huge emissions of greenhouse gases. One sustainable alternative is the cultivation of peat mosses after rewetting (‘Sphagnum farming’). Environmental parameters of such artificial systems may differ from those of natural Sphagnum ecosystems which host a rich fungal community. We studied the fungal community at a 4 ha Sphagnum farming field site in Northwestern Germany and compared it with that of natural Sphagnum ecosystems. Additionally, we asked if any fungi occur with potentially negative consequences for the commercial production and/or use of Sphagnum biomass. Samples were collected every 3 months within 1 year. High-throughput sequencing of the fungal ITS2 barcode was used to obtain a comprehensive community profile of the fungi. The dominant taxa in the fungal community of the Sphagnum farming field site were all commonly reported from natural Sphagnum ecosystems. While the taxonomic composition showed clear differences between seasons, a stable functional community profile was identified across seasons. Additionally, nutrient supply seems to affect composition of fungal community. Despite a rather high abundance of bryophyte parasites, and the occurrence of both Sphagnum-species-specific and general plant pathogens, their impact on the productivity and usage of Sphagnum biomass as raw material for growing media was considered to be low.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Reference74 articles.

1. A molecular phylogenetic reappraisal of the Didymosphaeriaceae ( = Montagnulaceae);Ariyawansa;Fungal Divers,2014

2. Fruit rot on olive caused by Pilidium concavum in Iran;Arzanlou;Australas Plant Dis Notes,2013

3. Pilidium concavum, causing tan-brown rot on strawberry in Iran;Ayoubi;J Plant Pathol,2016

4. Greenhouse gas exchange of rewetted bog peat extraction sites and a Sphagnum cultivation site in northwest Germany;Beyer;Biogeosciences,2015

5. Growing media volumetric potentials for meeting developments in the period 2020–2050;Block,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3