Greenhouse gas exchange of rewetted bog peat extraction sites and a <i>Sphagnum</i> cultivation site in northwest Germany

Author:

Beyer C.,Höper H.

Abstract

Abstract. During the last decades an increasing area of drained peatlands has been rewetted. Especially in Germany, rewetting is the principal treatment on cutover sites when peat extraction is finished. The objectives are bog restoration and the reduction of greenhouse gas (GHG) emissions. The first sites were rewetted in the 1980s. Thus, there is a good opportunity to study long-term effects of rewetting on greenhouse gas exchange, which has not been done so far on temperate cutover peatlands. Moreover, Sphagnum cultivating may become a new way to use cutover peatlands and agriculturally used peatlands as it permits the economical use of bogs under wet conditions. The climate impact of such measures has not been studied yet. We conducted a field study on the exchange of carbon dioxide, methane and nitrous oxide at three rewetted sites with a gradient from dry to wet conditions and at a Sphagnum cultivation site in NW Germany over the course of more than 2 years. Gas fluxes were measured using transparent and opaque closed chambers. The ecosystem respiration (CO2) and the net ecosystem exchange (CO2) were modelled at a high temporal resolution. Measured and modelled values fit very well together. Annually cumulated gas flux rates, net ecosystem carbon balances (NECB) and global warming potential (GWP) balances were determined. The annual net ecosystem exchange (CO2) varied strongly at the rewetted sites (from −201.7 ± 126.8 to 29.7± 112.7g CO2-C m−2 a−1) due to differing weather conditions, water levels and vegetation. The Sphagnum cultivation site was a sink of CO2 (−118.8 ± 48.1 and −78.6 ± 39.8 g CO2-C m−2 a−1). The annual CH4 balances ranged between 16.2 ± 2.2 and 24.2 ± 5.0g CH4-C m−2 a−1 at two inundated sites, while one rewetted site with a comparatively low water level and the Sphagnum farming site show CH4 fluxes close to 0. The net N2O fluxes were low and not significantly different between the four sites. The annual NECB was between −185.5 ± 126.9 and 49.9 ± 112.8 g CO2-C m−2 a−1 at the rewetted sites and −115.8 ± 48.1 and −77 ± 39.8 g CO2-C m−2 a−1 at the Sphagnum cultivating site. The annual GWP100 balances ranged from −280.5 ± 465.2 to 644.5 ± 413.6 g CO2-eq. m−2 a−1 at the rewetted sites. In contrast, the Sphagnum farming site had a cooling impact on the climate in both years (−356.8 ± 176.5 and −234.9 ± 145.9 g CO2-C m−2 a−1). If the carbon exported through the harvest of the Sphagnum biomass and the additional CO2 emission from the decay of the organic material is considered, the NECB and GWP100 balances are near neutral. Peat mining sites are likely to become net carbon sinks and a peat accumulating ("growing") peatland within 30 years of rewetting, but the GWP100 balance may still be positive. A recommended measure for rewetting is to achieve a water level of a few centimetres below ground. Sphagnum farming is a climate-friendly alternative to conventional commercial use of bogs. A year-round constant water level of a few centimetres below ground level should be maintained.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3