Abstract
AbstractThis study investigated the influence of vegetation and microforms on methane (CH4) balances of a rewetted bog in north-west Germany. The two study sites are in close proximity on the same former peat extraction area, one dominated by Sphagnum-mosses and the other one by a dense Betula pubescens stand with a high Eriophorum vaginatum cover. The contribution of microforms (hummocks/hollows) to CH4 emissions and the effect of Betula encroachment has been studied. Transparent and opaque chambers were used to measure CH4 fluxes every 3–4 weeks during daytime for one year. For the estimation of annual balances, three methods were compared and the method using water level and soil temperature as explanatory variables was selected. Fluxes were scaled to the site level. The annual emissions per site are and 7.1 ± 1.5 g CH4-C m−2 year−1 at the treed site and 36.1 ± 3.5 g CH4-C m−2 year−1 at the open site, mainly controlled by higher water levels. Highest annual emissions originated from hollows at the open site, but in the vegetation period, hummock emissions tend to be higher. At the tree site, emission differences between the microforms were less pronounced. There were no differences between fluxes from transparent and opaque chambers.
Funder
Deutsche Forschungsgemeinschaft
Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献