Transcriptomics analysis of the metabolic mechanisms of iron reduction induced by sulfate reduction mediated by sulfate-reducing bacteria

Author:

Li Guo-Xiang123ORCID,Bao Peng12

Affiliation:

1. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, P. R. China

2. Ningbo Urban Environment Observation and Station, Chinese Academy of Sciences, Zhongke Road 88, Ningbo 315800, P. R. China

3. Center for Applied Geosciences (ZAG), Eberhard Karls University Tuebingen, Hölderlinstr. 12, Tuebingen 72076, Germany

Abstract

ABSTRACT Sulfate-reducing bacteria (SRB) play an important role in sulfur, iron and carbon cycling. The majority of studies have illustrated the role of SRB in biogeochemical cycling in pure cultures. In this study, we established three SRB enrichment cultures (designated HL, NB and WC) from different paddy soils and conducted a transcriptomic analysis of their metabolic characteristics under sulfate and sulfate-free conditions. In the HL cultures, there was no sulfate consumption but ferrihydrite was reduced. This indicated that bacteria in the HL samples can reduce ferrihydrite and preferentially utilize ferrihydrite as the electron acceptor in the absence of both ferrihydrite and sulfate. Sulfate consumption was equal in the NB and the WC cultures, although more ferrihydrite was reduced in the NB cultures. Transcriptomics analysis showed that (i) upregulation of O-acetylserine sulfhydrylase gene expression indicating sulfate assimilation in the WC samples; (ii) the energy conservation trithionate pathway is commonly employed by SRB and (iii) sulfate not only enhanced iron reduction by its conversion to sulfide but also promoted enzymatic electron transfer via c-type cytochromes.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3