Engineering Photothermal and H2S‐Producing Living Nanomedicine by Bacteria‐Enabled Self‐Mineralization

Author:

Wang Weiyi1,Song Jun1,Yu Weijie1,Chen Meng1,Li Guangru1,Chen Jinli1,Chen Liang1,Yu Luodan2,Chen Yu1ORCID

Affiliation:

1. Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China

2. Department of Radiology Shanghai Institute of Thoracic Oncology Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200030 P. R. China

Abstract

AbstractBacteria‐initiated cancer therapy has been demonstrated high therapeutic efficacy against cancer. However, the undesired therapeutic efficacy and induced systematic inflammation storm compromise the therapeutic effect and outcome. Herein, a thermally‐activated living nanomedicine composed of reactive biohybrid (designated as Sa@FeS) is rationally designed and engineered for enhancing hydrogen sulfide (H2S)‐combined chemodynamic oncotherapy by biomineralizing ferrous sulfide nanoparticles (FeS NPs) onto the surface of a Salmonella typhimurium strain (Sa) without reducing bacterial activity. Ascribed to the deep penetration capability of Sa, FeS NPs facilitate photothermally‐enhanced catalytic Fenton reaction of decomposing endogenous H2O2 into cytotoxic hydroxyl radicals deep in tumor tissues upon near infrared irradiation. Meanwhile, Sa bacteria maintain sustained H2S release within tumor for achieving H2S‐induced intracellular acidosis that favors the generation of reactive oxygen species synergistically. Of note, the thermally‐triggered all‐in‐one strategy effectively inhibits bacterial viability, thus reducing the risk of systematic inflammation storm and ensuring biosafety. Therefore, the engineered nano‐bacteria living system exerts the thermally‐enhanced nanocatalytic and gas therapies to effectively eradicate tumors, providing a distinct paradigm for the combination of synthetic biology and nanomedicine in tumor therapy.

Funder

National Natural Science Foundation of China

Shanghai Shuguang Program

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3