Development of a prebiotic blend to influence in vitro fermentation effects, with a focus on propionate, in the gut

Author:

Collins Sineaid M1ORCID,Gibson Glenn R2,Kennedy Orla B2,Walton Gemma2,Rowland Ian2,Commane Daniel M3ORCID

Affiliation:

1. Department of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, UK

2. Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading RG6 6AP, UK

3. Department of Applied and Health Sciences, Northumbria University, Newcastle upon Tyne, NE2 4HH, UK

Abstract

ABSTRACT Short chain fatty acids (SCFAs) derived from the human gut microbiota, and in particular propionate, may beneficially influence metabolic processes such as appetite regulation. Development of prebiotics that induce high propionate levels during fermentation is desirable. A total of 11 candidate prebiotics were screened to investigate their fermentation characteristics, with a focus on propionate production in mixed anaerobic batch culture of faecal bacteria. Further to this, a continuous 3-stage colonic fermentation model (simulating the human colon) was used to evaluate changes in microbial ecology, lactate and SCFA production of three 50:50 blends, comprising both slow and rapidly fermented prebiotics. In mixed batch culture: xylo-oligosaccharide, polydextrose and α-gluco-oligosaccharide were associated with the greatest increase in propionate. Polydextrose, α-gluco-oligosaccharide, β-1,4 glucan and oat fibre induced the greatest reductions in the acetate to propionate ratio. The most bifidogenic prebiotics were the oligosaccharides. Fermentation of a 50:50 blend of inulin and arabinoxylan, through the continuous 3-stage colonic fermentation model, induced a substantial and sustained release of propionate. The sustained release of propionate through the colon, if replicable in vivo, could potentially influence blood glucose, blood lipids and appetite regulation, however, dietary intervention studies are needed. Bifidogenic effects were also observed for the inulin and arabinoxylan blend and an increase synthesis of butyrate and lactate, thus indicating wider prebiotic potential.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3