Novel antifungal activity of oligostyrylbenzenes compounds on Candida tropicalis biofilms

Author:

Quinteros Melisa A123,Galera Ivana L D13,Tolosa Juan4,García-Martínez Joaquín C4,Páez Paulina L235,Paraje María G13

Affiliation:

1. IMBIV – CONICET, Córdoba, Argentina

2. Departamento de Cs. Farmacéuticas, Fac. de Cs. Químicas, Univ. Nacional de Córdoba, Argentina

3. Cátedra de Microbiología, Fac. de Cs. Exactas Físicas y Naturales, Univ. Nacional de Córdoba, Argentina

4. Fac. de Farmacia de Albacete, Centro Regional de Inv. Biomédicas, Univ. de Castilla-La Mancha, España

5. UNITEFA – CONICET, Córdoba, Argentina

Abstract

Abstract As sessile cells of fungal biofilms are at least 500-fold more resistant to antifungal drugs than their planktonic counterparts, there is a requirement for new antifungal agents. Olygostyrylbenzenes (OSBs) are the first generation of poly(phenylene)vinylene dendrimers with a gram-positive antibacterial activity. Thus, this study aimed to investigate the antifungal activity of four OSBs (1, 2, 3, and 4) on planktonic cells and biofilms of Candida tropicalis. The minimum inhibitory concentration (MIC) for the planktonic population and the sessile minimum inhibitory concentrations (SMIC) were determined. Biofilm eradication was studied by crystal violet stain and light microscopy (LM), and confocal laser scanning microscopy (CLSM) was also utilized in conjunction with the image analysis software COMSTAT. Although all the OSBs studied had antifungal activity, the cationic OSBs were more effective than the anionic ones. A significant reduction of biofilms was observed at MIC and supraMIC50 (50 times higher than MIC) for compound 2, and at supraMIC50 with compound 3. Alterations in surface topography and the three-dimensional architecture of the biofilms were evident with LM and CLSM. The LM analysis revealed that the C. tropicalis strain produced a striking biofilm with oval blastospores, pseudohyphae, and true hyphae. CLSM images showed that a decrease occurred in the thickness of the mature biofilms treated with the OSBs at the most effective concentration for each one. The results obtained by microscopy were supported by those of the COMSTAT program. Our results revealed an antibiofilm activity, with compound 2 being a potential candidate for the treatment of C. tropicalis infections. Lay Summary This study aimed to investigate the antifungal activity of four OSBs (1, 2, 3, and 4) on planktonic cells and biofilms of Candida tropicalis. Our results revealed an antibiofilm activity, with compound 2 being a potential candidate for the treatment of C. tropicalis infections.

Funder

Fondo para la Investigación Científica y Tecnológica

MINCyT

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3