Trimeric and Tetrameric Cationic Styryl Dyes as Novel Fluorescence and CD Probes for ds-DNA and ds-RNA

Author:

Pavlović Saftić Dijana1ORCID,Krošl Knežević Ivona1,de Lera Garrido Fernando23ORCID,Tolosa Juan23ORCID,Majhen Dragomira4ORCID,Piantanida Ivo1ORCID,García Martínez Joaquín Calixto23ORCID

Affiliation:

1. Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia

2. Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Pharmacy, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain

3. Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain

4. Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia

Abstract

The wide use of mono- or bis-styryl fluorophores in biomedical applications prompted the presented design and study of a series of trimeric and tetrameric homo-analogues, styryl moieties arranged around a central aromatic core. The interactions with the most common biorelevant targets, ds-DNA and ds-RNA, were studied by a set of spectrophotometric methods (UV-VIS, fluorescence, circular dichroism, thermal denaturation). All studied dyes showed strong light absorption in the 350–420 nm range and strongly Stokes-shifted (+100–160 nm) emission with quantum yields (Φf) up to 0.57, whereby the mentioned properties were finely tuned by the type of the terminal cationic substituent and number of styryl components (tetramers being red-shifted in respect to trimers). All studied dyes strongly interacted with ds-DNA and ds-RNA with 1–10 nM−1 affinity, with dye emission being strongly quenched. The tetrameric analogues did not show any particular selectivity between ds-DNA or ds-RNA due to large size and consequent partial, non-selective insertion into DNA/RNA grooves. However, smaller trimeric styryl series showed size-dependent selective stabilization of ds-DNA vs. ds-RNA against thermal denaturation and highly selective or even specific recognition of several particular ds-DNA or ds-RNA structures by induced circular dichroism (ICD) bands. The chiral (ICD) selectivity was controlled by the size of a terminal cationic substituent. All dyes entered efficiently live human cells with negligible cytotoxic activity. Further prospects in the transfer of ICD-based selectivity into fluorescence-chiral methods (FDCD and CPL) is proposed, along with the development of new analogues with red-shifted absorbance properties.

Funder

Croatian Science Foundation project

Junta de Comunidades de Castilla-La Mancha/FEDER

Universidad de Castilla-La Mancha

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3