Minimising carbon and financial costs of steam sterilisation and packaging of reusable surgical instruments

Author:

Rizan Chantelle123ORCID,Lillywhite Rob4,Reed Malcolm2ORCID,Bhutta Mahmood F12

Affiliation:

1. Ear, Nose and Throat Department, University Hospitals Sussex NHS Foundation Trust, Brighton, UK

2. BSMS Teaching Building, Brighton and Sussex Medical School, Brighton, UK

3. Research Department, Royal College of Surgeons of England, London, UK

4. Department of Life Sciences, University of Warwick, Coventry, UK

Abstract

Abstract Background The aim of this study was to estimate the carbon footprint and financial cost of decontaminating (steam sterilization) and packaging reusable surgical instruments, indicating how that burden might be reduced, enabling surgeons to drive action towards net-zero-carbon surgery. Methods Carbon footprints were estimated using activity data and prospective machine-loading audit data at a typical UK in-hospital sterilization unit, with instruments wrapped individually in flexible pouches, or prepared as sets housed in single-use tray wraps or reusable rigid containers. Modelling was used to determine the impact of alternative machine loading, opening instruments during the operation, streamlining sets, use of alternative energy sources for decontamination, and alternative waste streams. Results The carbon footprint of decontaminating and packaging instruments was lowest when instruments were part of sets (66–77 g CO2e per instrument), with a two- to three-fold increase when instruments were wrapped individually (189 g CO2e per instrument). Where 10 or fewer instruments were required for the operation, obtaining individually wrapped items was preferable to opening another set. The carbon footprint was determined significantly by machine loading and the number of instruments per machine slot. Carbon and financial costs increased with streamlining sets. High-temperature incineration of waste increased the carbon footprint of single-use packaging by 33–55 per cent, whereas recycling reduced this by 6–10 per cent. The absolute carbon footprint was dependent on the energy source used, but this did not alter the optimal processes to minimize that footprint. Conclusion Carbon and financial savings can be made by preparing instruments as part of sets, integrating individually wrapped instruments into sets rather than streamlining them, efficient machine loading, and using low-carbon energy sources alongside recycling.

Funder

Health Education England and the Royal College of Surgeons of England

Publisher

Oxford University Press (OUP)

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3