Affiliation:
1. Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
2. Department of Biological and Physical Sciences, Karatina University, Karatina, Kenya
3. Department of Botany, University of British Columbia, Vancouver, BC, Canada
Abstract
Abstract
Lathyrus odoratus (sweet pea) is an ornamental plant with exceptional floral scent, previously used as an experimental organism in the early development of Mendelian genetics. However, its terpene synthases (TPSs), which act as metabolic gatekeepers in the biosynthesis of volatile terpenoids, remain to be characterized. Auto-Headspace Solid-phase Microextraction/Gas chromatography–mass spectrometry analysis of floral volatile terpene constituents from seven sweet pea cultivars identified α-bergamotene, linalool, (−)-α-cubebene, geraniol, β-caryophyllene and β-sesquiphellandrene as the dominant compounds. RNA sequencing was performed to profile the transcriptome of L. odoratus flowers. Bioinformatic analysis identified eight TPS genes (acronymed as LoTPS) that were successfully cloned, heterologously expressed and functionally analyzed. LoTPS4 and LoTPS7, belonging to the TPS-b clade, biochemically catalyzed the formation of monoterpenes and sesquiterpenes. LoTPS3 and LoTPS8, placed in the TPS-a clade, also generated monoterpenes and sesquiterpenes, while LoTPS12 belonging to the TPS-g clade showed linalool/nerolidol synthase activity. Notably, biochemical assays of the recombinant LoTPS proteins revealed their catalytic promiscuity, and the enzymatic products were basically consistent with major volatile compounds released from sweet pea flowers. The data from our study lay the foundation for the chemical ecology, molecular genetics and biotechnological improvement of sweet pea and other legumes (Fabaceae).
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Department of Science and Technology of Jilin Province
Program for Introducing Talents to Universities
Fundamental Research Fund for the Central Universities
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Plant Science,Physiology,General Medicine
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献