Life-Course Monitoring of Endogenous Phytohormone Levels under Field Conditions Reveals Diversity of Physiological States among Barley Accessions

Author:

Hirayama Takashi1ORCID,Saisho Daisuke1,Matsuura Takakazu1,Okada Satoshi1,Takahagi Kotaro2,Kanatani Asaka2,Ito Jun3,Tsuji Hiroyuki3,Ikeda Yoko1ORCID,Mochida Keiichi123ORCID

Affiliation:

1. Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan

2. RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan

3. Kihara Institute for Biological Research, Yokohama City University, 641-12 Maiokacho, Totsuka-ku, Yokohama, Kanagawa, 244-0813 Japan

Abstract

Abstract Agronomically important traits often develop during the later stages of crop growth as consequences of various plant–environment interactions. Therefore, the temporal physiological states that change and accumulate during the crop’s life course can significantly affect the eventual phenotypic differences in agronomic traits among crop varieties. Thus, to improve productivity, it is important to elucidate the associations between temporal physiological responses during the growth of different crop varieties and their agronomic traits. However, data representing the dynamics and diversity of physiological states in plants grown under field conditions are sparse. In this study, we quantified the endogenous levels of five phytohormones — auxin, cytokinins (CKs), ABA, jasmonate and salicylic acid — in the leaves of eight diverse barley (Hordeum vulgare) accessions grown under field conditions sampled weekly over their life course to assess the ongoing fluctuations in hormone levels in the different accessions under field growth conditions. Notably, we observed enormous changes over time in the development-related plant hormones, such as auxin and CKs. Using 3′ RNA-seq-based transcriptome data from the same samples, we investigated the expression of barley genes orthologous to known hormone-related genes of Arabidopsis throughout the life course. These data illustrated the dynamics and diversity of the physiological states of these field-grown barley accessions. Together, our findings provide new insights into plant–environment interactions, highlighting that there is cultivar diversity in physiological responses during growth under field conditions.

Funder

Core Research for Evolutionary Science and Technology

CREST

Japan Science and Technology Agency

JST

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3