Soil microbes alter seedling performance and biotic interactions under plant competition and contrasting light conditions

Author:

Xi Nianxun1,Bloor Juliette M G2,Chu Chengjin1

Affiliation:

1. Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China

2. INRAE, VetAgro-Sup, UREP, 5 Chemin de Beaulieu, Clermont-Ferrand, France

Abstract

Abstract Background and Aims Growing evidence suggests that the net effect of soil microbes on plants depends on both abiotic and biotic conditions, but the context-dependency of soil feedback effects remains poorly understood. Here we test for interactions between the presence of conspecific soil microbes, plant competition and light availability on tree seedling performance. Methods Seedlings of two congeneric tropical tree species, Bauhinia brachycarpa and Bauhinia variegata, were grown in either sterilized soil or soil conditioned by conspecific soil microorganisms in a two-phase greenhouse feedback experiment. We examined the interactive effects of soil treatment (live, sterilized), light availability (low, high) and plant competition (no competition, intraspecific and interspecific competition) on tree seedling biomass. We also investigated the linkages between the outcomes of soil feedback effects and soil microbial community structure. Key Results The outcomes of soil feedback effects on seedling biomass varied depending on both competition treatment and light availability. Under low light conditions, soil feedback effects were neutral irrespective of competition treatment and plant species. Soil feedback effects were negative in high light for seedlings with interspecific competition, but positive for seedlings growing alone or with intraspecific competition. Soil feedback effects for seedlings were driven by variation in the Gram-positive:Gram-negative bacteria ratio. Light and conspecific soil microbes had interactive effects on the competitive environment experienced by tree species; in low light the presence of conspecific soil microbes decreased plant competition intensity, whereas in high light both the intensity and the importance of competition increased for seedlings in the presence of soil microbes, irrespective of plant species. Conclusions Our findings underline the importance of light and plant competition for the outcomes of soil feedback effects on young tree seedlings, and suggest that reduced light availability may reduce the influence of conspecific soil microbes on plant–plant interactions.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3