Ascorbate glutathione-dependent H2O2 scavenging is an important process in axillary bud outgrowth in rosebush

Author:

Porcher Alexis1,Guérin Vincent1,Montrichard Françoise1,Lebrec Anita1,Lothier Jérémy1,Vian Alain1

Affiliation:

1. Université d’Angers, Agrocampus Ouest, INRAE, UMR IRHS, SFR QuaSaV, Beaucouzé, France

Abstract

Abstract Background and Aims Branching is an important mechanism of plant shape establishment and the direct consequence of axillary bud outgrowth. Recently, hydrogen peroxide (H2O2) metabolism, known to be involved in plant growth and development, has been proposed to contribute to axillary bud outgrowth. However, the involvement of H2O2 in this process remains unclear. Methods We analysed the content of H2O2 during bud outgrowth and characterized its catabolism, both at the transcriptional level and in terms of its enzymatic activities, using RT–qPCR and spectrophotometric methods, respectively. In addition, we used in vitro culture to characterize the effects of H2O2 application and the reduced glutathione (GSH) synthesis inhibitor l-buthionine sulfoximine (BSO) on bud outgrowth in relation to known molecular markers involved in this process. Key Results Quiescent buds displayed a high content of H2O2 that declined when bud outgrowth was initiated, as the consequence of an increase in the scavenging activity that is associated with glutathione pathways (ascorbate–glutathione cycle and glutathione biosynthesis); catalase did not appear to be implicated. Modification of bud redox state after the application of H2O2 or BSO prevented axillary bud outgrowth by repressing organogenesis and newly formed axis elongation. Hydrogen peroxide also repressed bud outgrowth-associated marker gene expression. Conclusions These results show that high levels of H2O2 in buds that are in a quiescent state prevents bud outgrowth. Induction of ascorbate–glutathione pathway scavenging activities results in a strong decrease in H2O2 content in buds, which finally allows bud outgrowth.

Funder

French Pays de la Loire region, Angers Loire Métropole

European Regional Development Fund

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3