Transcriptome-wide identification and characterization of microRNAs in diverse phases of wood formation in Populus trichocarpa

Author:

Wang Ruiqi1ORCID,Reng Mengxuan2,Tian Shuanghui1,Liu Cong1,Cheng He1,Liu Yingying1,Zhang Huaxin2,Saqib Muhammad3,Wei Hairong4,Wei Zhigang2

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang Harbin 150040, China

2. Research Center of Saline and Alkali Land of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China

3. Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan

4. College of Forest Resource and Environmental Science, Michigan Technological University, Houghton MI49931, USA

Abstract

Abstract We applied miRNA expression profiling method to Populus trichocarpa stems of the three developmental stages, primary stem (PS), transitional stem (TS), and secondary stem (SS), to investigate miRNA species and their regulation on lignocellulosic synthesis and related processes. We obtained 892, 872, and 882 known miRNAs and 1727, 1723, and 1597 novel miRNAs, from PS, TS, and SS, respectively. Comparisons of these miRNA species among different developmental stages led to the identification of 114, 306, and 152 differentially expressed miRNAs (DE-miRNAs), which had 921, 2639, and 2042 candidate target genes (CTGs) in the three respective stages of the same order. Correlation analysis revealed 47, 439, and 71 DE-miRNA-CTG pairs of high negative correlation in PS, TS, and SS, respectively. Through biological process analysis, we finally identified 34, 6, and 76 miRNA-CTG pairs from PS, TS, and SS, respectively, and the miRNA target genes in these pairs regulate or participate lignocellulosic biosynthesis-related biological processes: cell division and differentiation, cell wall modification, secondary cell wall biosynthesis, lignification, and programmed cell death processes. This is the first report on an integrated analysis of genome-wide mRNA and miRNA profilings during multiple phases of poplar stem development. Our analysis results imply that individual miRNAs modulate secondary growth and lignocellulosic biosynthesis through regulating transcription factors and lignocellulosic biosynthetic pathway genes, resulting in more dynamic promotion, suppression, or regulatory circuits. This study advanced our understanding of many individual miRNAs and their essential, diversified roles in the dynamic regulation of secondary growth in woody tree species.

Funder

Fundamental Research Funds

Central Non-profit Research Institution of CAF

National Nature Science Fund of China

National Key Research and Development Project

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3