Novel metagenomics analysis of stony coral tissue loss disease

Author:

Heinz Jakob M12,Lu Jennifer123,Huebner Lindsay K4ORCID,Salzberg Steven L1256,Sommer Markus12,Rosales Stephanie M78

Affiliation:

1. Center for Computational Biology, Johns Hopkins University , Baltimore, MD 21211 , USA

2. Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering , Baltimore, MD 21218 , USA

3. Department of Pathology, Johns Hopkins School of Medicine , Baltimore, MD 21205 , USA

4. Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission , St. Petersburg, FL 33701 , USA

5. Department of Computer Science, Johns Hopkins University , Baltimore, MD 21218 , USA

6. Department of Biostatistics, Johns Hopkins University , Baltimore, MD 21205 , USA

7. Cooperative Institute for Marine and Atmospheric Studies, University of Miami , Miami, FL 33149 , USA

8. Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration , Miami, FL 33149 , USA

Abstract

Abstract Stony coral tissue loss disease (SCTLD) has devastated coral reefs off the coast of Florida and continues to spread throughout the Caribbean. Although a number of bacterial taxa have consistently been associated with SCTLD, no pathogen has been definitively implicated in the etiology of SCTLD. Previous studies have predominantly focused on the prokaryotic community through 16S rRNA sequencing of healthy and affected tissues. Here, we provide a different analytical approach by applying a bioinformatics pipeline to publicly available metagenomic sequencing samples of SCTLD lesions and healthy tissues from 4 stony coral species. To compensate for the lack of coral reference genomes, we used data from apparently healthy coral samples to approximate a host genome and healthy microbiome reference. These reads were then used as a reference to which we matched and removed reads from diseased lesion tissue samples, and the remaining reads associated only with disease lesions were taxonomically classified at the DNA and protein levels. For DNA classifications, we used a pathogen identification protocol originally designed to identify pathogens in human tissue samples, and for protein classifications, we used a fast protein sequence aligner. To assess the utility of our pipeline, a species-level analysis of a candidate genus, Vibrio, was used to demonstrate the pipeline's effectiveness. Our approach revealed both complementary and unique coral microbiome members compared with a prior metagenome analysis of the same dataset.

Funder

NIH

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3