Acquisition of cross-azole tolerance and aneuploidy in Candida albicans strains evolved to posaconazole

Author:

Kukurudz Rebekah J1ORCID,Chapel Madison1ORCID,Wonitowy Quinn1ORCID,Adamu Bukari Abdul-Rahman1ORCID,Sidney Brooke1ORCID,Sierhuis Riley1ORCID,Gerstein Aleeza C12ORCID

Affiliation:

1. Department of Microbiology, The University of Manitoba , Winnipeg, MB R3T 2N2, Canada

2. Department of Statistics, The University of Manitoba , Winnipeg, MB R3T 2N2, Canada

Abstract

Abstract A number of in vitro studies have examined the acquisition of drug resistance to the triazole fluconazole, a first-line treatment for many Candida infections. Much less is known about posaconazole, a newer triazole. We conducted the first in vitro experimental evolution of replicates from 8 diverse strains of Candida albicans in a high level of the fungistatic drug posaconazole. Approximately half of the 132 evolved replicates survived 50 generations of evolution, biased toward some of the strain backgrounds. We found that although increases in drug resistance were rare, increases in drug tolerance (the slow growth of a subpopulation of cells in a level of drug above the resistance level) were common across strains. We also found that adaptation to posaconazole resulted in widespread cross-tolerance to other azole drugs. Widespread aneuploidy was observed in evolved replicates from some strain backgrounds. Trisomy of at least one of chromosomes 3, 6, and R was identified in 11 of 12 whole-genome sequenced evolved SC5314 replicates. These findings document rampant evolved cross-tolerance among triazoles and highlight that increases in drug tolerance can evolve independently of drug resistance in a diversity of C. albicans strain backgrounds.

Funder

NSERC Discovery Grant

University of Manitoba and a University of Manitoba University Research Grants Program

University of Manitoba, Faculty of Science

NSERC Undergraduate Student Research Awards

EvoFunPath

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3