Genome of the Rio Pearlfish (Nematolebias whitei), a bi-annual killifish model for Eco-Evo-Devo in extreme environments

Author:

Thompson Andrew W12ORCID,Wojtas Harrison1,Davoll Myles13,Braasch Ingo12ORCID

Affiliation:

1. Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA

2. Ecology, Evolution & Behavior (EEB) Program, Michigan State University, East Lansing, MI 48824, USA

3. Department of Biology, University of Virginia, Charlottesville, VA 22903, USA

Abstract

Abstract The Rio Pearlfish, Nematolebias whitei, is a bi-annual killifish species inhabiting seasonal pools in the Rio de Janeiro region of Brazil that dry twice per year. Embryos enter dormant diapause stages in the soil, waiting for the inundation of the habitat which triggers hatching and commencement of a new life cycle. Rio Pearlfish represents a convergent, independent origin of annualism from other emerging killifish model species. While some transcriptomic datasets are available for Rio Pearlfish, thus far, a sequenced genome has been unavailable. Here, we present a high quality, 1.2 Gb chromosome-level genome assembly, genome annotations, and a comparative genomic investigation of the Rio Pearlfish as representative of a vertebrate clade that evolved environmentally cued hatching. We show conservation of 3D genome structure across teleost fish evolution, developmental stages, tissues, and cell types. Our analysis of mobile DNA shows that Rio Pearlfish, like other annual killifishes, possesses an expanded transposable element profile with implications for rapid aging and adaptation to harsh conditions. We use the Rio Pearlfish genome to identify its hatching enzyme gene repertoire and the location of the hatching gland, a key first step in understanding the developmental genetic control of hatching. The Rio Pearlfish genome expands the comparative genomic toolkit available to study convergent origins of seasonal life histories, diapause, and rapid aging phenotypes. We present the first set of genomic resources for this emerging model organism, critical for future functional genetic, and multiomic explorations of “Eco-Evo-Devo” phenotypes of resilience and adaptation to extreme environments.

Funder

National Science Foundation Bio/computational Evolution in Action CONsortium grant to AWT and IB (NSF BEACON

National Institutes of Health Office of Research Infrastructure Programs grant to IB (NIH

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3